correct error message of soft_dvpp ops and fix example of IterSampler

This commit is contained in:
Xiao Tianci 2021-03-16 20:29:14 +08:00
parent a37e157697
commit 4f1dbc6cd5
4 changed files with 40 additions and 23 deletions

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -52,13 +52,14 @@ Status SoftDvppDecodeRandomCropResizeJpegOp::Compute(const std::shared_ptr<Tenso
std::shared_ptr<Tensor> *output) {
IO_CHECK(input, output);
if (!IsNonEmptyJPEG(input)) {
RETURN_STATUS_UNEXPECTED("SoftDvppDecodeRandomCropResizeJpeg only support process jpeg image.");
RETURN_STATUS_UNEXPECTED("SoftDvppDecodeRandomCropResizeJpeg: only support processing raw jpeg image.");
}
SoftDpCropInfo crop_info;
RETURN_IF_NOT_OK(GetCropInfo(input, &crop_info));
try {
unsigned char *buffer = const_cast<unsigned char *>(input->GetBuffer());
CHECK_FAIL_RETURN_UNEXPECTED(buffer != nullptr, "The input image buffer is empty.");
CHECK_FAIL_RETURN_UNEXPECTED(buffer != nullptr,
"SoftDvppDecodeRandomCropResizeJpeg: the input image buffer is empty.");
SoftDpProcsessInfo info;
info.input_buffer = static_cast<uint8_t *>(buffer);
info.input_buffer_size = input->SizeInBytes();
@ -69,14 +70,14 @@ Status SoftDvppDecodeRandomCropResizeJpegOp::Compute(const std::shared_ptr<Tenso
info.output_buffer_size = target_width_ * target_height_ * 3;
info.is_v_before_u = true;
int ret = DecodeAndCropAndResizeJpeg(&info, crop_info);
std::string error_info("Soft dvpp DecodeAndResizeJpeg failed with return code: ");
error_info += std::to_string(ret);
std::string error_info("SoftDvppDecodeRandomCropResizeJpeg: failed with return code: ");
error_info += std::to_string(ret) + ", please check the log information for more details.";
CHECK_FAIL_RETURN_UNEXPECTED(ret == 0, error_info);
std::shared_ptr<CVTensor> cv_tensor = nullptr;
RETURN_IF_NOT_OK(CVTensor::CreateFromMat(out_rgb_img, &cv_tensor));
*output = std::static_pointer_cast<Tensor>(cv_tensor);
} catch (const cv::Exception &e) {
std::string error = "Error in SoftDvppDecodeRandomCropResizeJpegOp:" + std::string(e.what());
std::string error = "SoftDvppDecodeRandomCropResizeJpeg:" + std::string(e.what());
RETURN_STATUS_UNEXPECTED(error);
}
return Status::OK();

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -28,11 +28,11 @@ namespace dataset {
Status SoftDvppDecodeResizeJpegOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
IO_CHECK(input, output);
if (!IsNonEmptyJPEG(input)) {
RETURN_STATUS_UNEXPECTED("SoftDvppDecodeReiszeJpegOp only support process jpeg image.");
RETURN_STATUS_UNEXPECTED("SoftDvppDecodeReiszeJpeg: only support processing raw jpeg image.");
}
try {
unsigned char *buffer = const_cast<unsigned char *>(input->GetBuffer());
CHECK_FAIL_RETURN_UNEXPECTED(buffer != nullptr, "The input image buffer is empty.");
CHECK_FAIL_RETURN_UNEXPECTED(buffer != nullptr, "SoftDvppDecodeReiszeJpeg: the input image buffer is empty.");
SoftDpProcsessInfo info;
info.input_buffer = static_cast<uint8_t *>(buffer);
info.input_buffer_size = input->SizeInBytes();
@ -43,11 +43,11 @@ Status SoftDvppDecodeResizeJpegOp::Compute(const std::shared_ptr<Tensor> &input,
if (target_width_ == 0) {
if (input_h < input_w) {
CHECK_FAIL_RETURN_UNEXPECTED(input_h != 0, "The input height is 0");
CHECK_FAIL_RETURN_UNEXPECTED(input_h != 0, "SoftDvppDecodeReiszeJpeg: the input height is 0.");
info.output_height = target_height_;
info.output_width = static_cast<int>(std::lround(static_cast<float>(input_w) / input_h * info.output_height));
} else {
CHECK_FAIL_RETURN_UNEXPECTED(input_w != 0, "The input width is 0");
CHECK_FAIL_RETURN_UNEXPECTED(input_w != 0, "SoftDvppDecodeReiszeJpeg: the input width is 0.");
info.output_width = target_height_;
info.output_height = static_cast<int>(std::lround(static_cast<float>(input_h) / input_w * info.output_width));
}
@ -62,14 +62,14 @@ Status SoftDvppDecodeResizeJpegOp::Compute(const std::shared_ptr<Tensor> &input,
info.is_v_before_u = true;
int ret = DecodeAndResizeJpeg(&info);
std::string error_info("Soft dvpp DecodeAndResizeJpeg failed with return code: ");
error_info += std::to_string(ret);
std::string error_info("SoftDvppDecodeReiszeJpeg: failed with return code: ");
error_info += std::to_string(ret) + ", please check the log information for more details.";
CHECK_FAIL_RETURN_UNEXPECTED(ret == 0, error_info);
std::shared_ptr<CVTensor> cv_tensor = nullptr;
RETURN_IF_NOT_OK(CVTensor::CreateFromMat(out_rgb_img, &cv_tensor));
*output = std::static_pointer_cast<Tensor>(cv_tensor);
} catch (const cv::Exception &e) {
std::string error = "Error in SoftDvppDecodeResizeJpegOp:" + std::string(e.what());
std::string error = "SoftDvppDecodeResizeJpeg:" + std::string(e.what());
RETURN_STATUS_UNEXPECTED(error);
}
return Status::OK();
@ -82,7 +82,7 @@ Status SoftDvppDecodeResizeJpegOp::OutputShape(const std::vector<TensorShape> &i
TensorShape out({-1, -1, 3}); // we don't know what is output image size, but we know it should be 3 channels
if (inputs[0].Rank() == 1) outputs.emplace_back(out);
if (!outputs.empty()) return Status::OK();
return Status(StatusCode::kMDUnexpectedError, "Input has a wrong shape");
return Status(StatusCode::kMDUnexpectedError, "SoftDvppDecodeReiszeJpeg: input has a wrong shape.");
}
} // namespace dataset

View File

@ -1512,6 +1512,14 @@ SoftDvppDecodeRandomCropResizeJpegOperation::SoftDvppDecodeRandomCropResizeJpegO
Status SoftDvppDecodeRandomCropResizeJpegOperation::ValidateParams() {
// size
RETURN_IF_NOT_OK(ValidateVectorSize("SoftDvppDecodeRandomCropResizeJpeg", size_));
for (int32_t i = 0; i < size_.size(); i++) {
if (size_[i] % 2 == 1) {
std::string err_msg = "SoftDvppDecodeRandomCropResizeJpeg: size[" + std::to_string(i) +
"] must be even values, got: " + std::to_string(size_[i]);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
// scale
RETURN_IF_NOT_OK(ValidateVectorScale("SoftDvppDecodeRandomCropResizeJpeg", scale_));
// ratio
@ -1554,6 +1562,14 @@ SoftDvppDecodeResizeJpegOperation::SoftDvppDecodeResizeJpegOperation(std::vector
Status SoftDvppDecodeResizeJpegOperation::ValidateParams() {
RETURN_IF_NOT_OK(ValidateVectorSize("SoftDvppDecodeResizeJpeg", size_));
for (int32_t i = 0; i < size_.size(); i++) {
if (size_[i] % 2 == 1) {
std::string err_msg = "SoftDvppDecodeResizeJpeg: size[" + std::to_string(i) +
"] must be even values, got: " + std::to_string(size_[i]);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
return Status::OK();
}

View File

@ -25,6 +25,7 @@ import mindspore._c_dataengine as cde
import mindspore.dataset as ds
from ..core import validator_helpers as validator
def select_sampler(num_samples, input_sampler, shuffle, num_shards, shard_id):
"""
Create sampler based on user input.
@ -615,8 +616,8 @@ class SubsetSampler(BuiltinSampler):
Examples:
>>> indices = [0, 1, 2, 3, 4, 5]
>>>
>>> # creates a SubsetRandomSampler, will sample from the provided indices
>>> sampler = ds.SubsetRandomSampler(indices)
>>> # creates a SubsetSampler, will sample from the provided indices
>>> sampler = ds.SubsetSampler(indices)
>>> dataset = ds.ImageFolderDataset(image_folder_dataset_dir,
... num_parallel_workers=8,
... sampler=sampler)
@ -694,7 +695,7 @@ class SubsetRandomSampler(SubsetSampler):
Samples the elements randomly from a sequence of indices.
Args:
indices (list[int]): A sequence of indices.
indices (Any iterable python object but string): A sequence of indices.
num_samples (int, optional): Number of elements to sample (default=None, all elements).
Examples:
@ -740,17 +741,16 @@ class IterSampler(Sampler):
num_samples (int, optional): Number of elements to sample (default=None, all elements).
Examples:
>>> class MySampler():
>>> def __iter__(self):
>>> for i in range(99, -1, -1):
>>> yield i
>>> class MySampler:
... def __iter__(self):
... for i in range(99, -1, -1):
... yield i
>>> # creates an IterSampler
>>> sampler = ds.IterSampler(sampler=MySampler())
>>> dataset = ds.ImageFolderDataset(image_folder_dataset_dir,
... num_parallel_workers=8,
... sampler=sampler)
"""
def __init__(self, sampler, num_samples=None):