Change the interfaces in trasformation base class
This commit is contained in:
parent
5a0fe979ab
commit
4aa339cb5a
|
@ -272,6 +272,10 @@ def check_type(data_type, value_type, name):
|
||||||
def raise_none_error(name):
|
def raise_none_error(name):
|
||||||
raise ValueError(f"{name} should be specified. Value cannot be None")
|
raise ValueError(f"{name} should be specified. Value cannot be None")
|
||||||
|
|
||||||
|
@constexpr
|
||||||
|
def raise_not_impl_error(name):
|
||||||
|
raise ValueError(f"{name} function should be implemented for non-linear transformation")
|
||||||
|
|
||||||
@constexpr
|
@constexpr
|
||||||
def check_distribution_name(name, expected_name):
|
def check_distribution_name(name, expected_name):
|
||||||
if name != expected_name:
|
if name != expected_name:
|
||||||
|
|
|
@ -18,7 +18,7 @@ from mindspore._checkparam import Validator as validator
|
||||||
from mindspore.common import dtype as mstype
|
from mindspore.common import dtype as mstype
|
||||||
import mindspore.nn as nn
|
import mindspore.nn as nn
|
||||||
from .distribution import Distribution
|
from .distribution import Distribution
|
||||||
from ._utils.utils import check_type
|
from ._utils.utils import check_type, raise_not_impl_error
|
||||||
|
|
||||||
class TransformedDistribution(Distribution):
|
class TransformedDistribution(Distribution):
|
||||||
"""
|
"""
|
||||||
|
@ -56,6 +56,7 @@ class TransformedDistribution(Distribution):
|
||||||
self._distribution = distribution
|
self._distribution = distribution
|
||||||
self._is_linear_transformation = bijector.is_constant_jacobian
|
self._is_linear_transformation = bijector.is_constant_jacobian
|
||||||
self.exp = P.Exp()
|
self.exp = P.Exp()
|
||||||
|
self.log = P.Log()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def bijector(self):
|
def bijector(self):
|
||||||
|
@ -69,37 +70,49 @@ class TransformedDistribution(Distribution):
|
||||||
def is_linear_transformation(self):
|
def is_linear_transformation(self):
|
||||||
return self._is_linear_transformation
|
return self._is_linear_transformation
|
||||||
|
|
||||||
def _cdf(self, value):
|
def _cdf(self, *args, **kwargs):
|
||||||
r"""
|
r"""
|
||||||
.. math::
|
.. math::
|
||||||
Y = g(X)
|
Y = g(X)
|
||||||
P(Y <= a) = P(X <= g^{-1}(a))
|
P(Y <= a) = P(X <= g^{-1}(a))
|
||||||
"""
|
"""
|
||||||
inverse_value = self.bijector.inverse(value)
|
inverse_value = self.bijector("inverse", *args, **kwargs)
|
||||||
return self.distribution.cdf(inverse_value)
|
return self.distribution("cdf", inverse_value)
|
||||||
|
|
||||||
def _log_prob(self, value):
|
def _log_cdf(self, *args, **kwargs):
|
||||||
|
return self.log(self._cdf(*args, **kwargs))
|
||||||
|
|
||||||
|
def _survival_function(self, *args, **kwargs):
|
||||||
|
return 1.0 - self._cdf(*args, **kwargs)
|
||||||
|
|
||||||
|
def _log_survival(self, *args, **kwargs):
|
||||||
|
return self.log(self._survival_function(*args, **kwargs))
|
||||||
|
|
||||||
|
def _log_prob(self, *args, **kwargs):
|
||||||
r"""
|
r"""
|
||||||
.. math::
|
.. math::
|
||||||
Y = g(X)
|
Y = g(X)
|
||||||
Py(a) = Px(g^{-1}(a)) * (g^{-1})'(a)
|
Py(a) = Px(g^{-1}(a)) * (g^{-1})'(a)
|
||||||
\log(Py(a)) = \log(Px(g^{-1}(a))) + \log((g^{-1})'(a))
|
\log(Py(a)) = \log(Px(g^{-1}(a))) + \log((g^{-1})'(a))
|
||||||
"""
|
"""
|
||||||
inverse_value = self.bijector.inverse(value)
|
inverse_value = self.bijector("inverse", *args, **kwargs)
|
||||||
unadjust_prob = self.distribution.log_prob(inverse_value)
|
unadjust_prob = self.distribution("log_prob", inverse_value)
|
||||||
log_jacobian = self.bijector.inverse_log_jacobian(value)
|
log_jacobian = self.bijector("inverse_log_jacobian", *args, **kwargs)
|
||||||
return unadjust_prob + log_jacobian
|
return unadjust_prob + log_jacobian
|
||||||
|
|
||||||
def _prob(self, value):
|
def _prob(self, *args, **kwargs):
|
||||||
return self.exp(self._log_prob(value))
|
return self.exp(self._log_prob(*args, **kwargs))
|
||||||
|
|
||||||
def _sample(self, shape):
|
def _sample(self, *args, **kwargs):
|
||||||
org_sample = self.distribution.sample(shape)
|
org_sample = self.distribution("sample", shape)
|
||||||
return self.bijector.forward(org_sample)
|
return self.bijector("forward", org_sample)
|
||||||
|
|
||||||
def _mean(self):
|
def _mean(self, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
Note:
|
Note:
|
||||||
This function maybe overridden by derived class.
|
This function maybe overridden by derived class.
|
||||||
"""
|
"""
|
||||||
return self.bijector.forward(self.distribution.mean())
|
if not self.is_linear_transformation:
|
||||||
|
raise_not_impl_error(mean)
|
||||||
|
|
||||||
|
return self.bijector("forward", self.distribution("mean"))
|
||||||
|
|
Loading…
Reference in New Issue