!49227 Add avgpool args
Merge pull request !49227 from 冯一航/modify_avgpool_args
This commit is contained in:
commit
48cb94e5c6
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.AvgPool1d
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.nn.AvgPool1d(kernel_size=1, stride=1, pad_mode='valid')
|
||||
.. py:class:: mindspore.nn.AvgPool1d(kernel_size=1, stride=1, pad_mode="valid", padding=0, ceil_mode=False, count_include_pad=True)
|
||||
|
||||
在一个输入Tensor上应用1D平均池化运算,可被视为组成一个1D输入平面。
|
||||
|
||||
|
@ -12,25 +12,29 @@ mindspore.nn.AvgPool1d
|
|||
\text{output}(N_i, C_j, l) = \frac{1}{k} \sum_{n=0}^{k-1}
|
||||
\text{input}(N_i, C_j, stride \times l + n)
|
||||
|
||||
.. note::
|
||||
pad_mode仅支持"same"和"valid"。
|
||||
|
||||
参数:
|
||||
- **kernel_size** (int) - 指定池化核尺寸大小,数据类型为整型。默认值:1。
|
||||
- **stride** (int) - 池化操作的移动步长,数据类型为整型。默认值:1。
|
||||
- **pad_mode** (str) - 指定池化的填充方式,可选值为"same"或"valid",不区分大小写。默认值:"valid"。
|
||||
- **pad_mode** (str) - 指定池化的填充方式,可选值为"same","valid"或"pad",不区分大小写。默认值:"valid"。
|
||||
|
||||
- **same** - 输出的shape与输入整数 `stride` 后的值相同。
|
||||
- **valid** - 在不填充的前提下返回有效计算所得的输出。不满足计算的多余像素会被丢弃。
|
||||
- **pad** - 对输入进行填充。在输入的左右两端填充 `padding` 大小的0。如果设置此模式, `padding` 必须大于或等于0。
|
||||
|
||||
- **padding** (Union(int, tuple[int], list[int])) - 池化填充值。默认值:0。 `padding` 只能是一个整数或者包含一个整数的tuple/list,设定后,则会在输入的左边和右边填充 `padding` 次或者 `padding[0]` 次。
|
||||
- **ceil_mode** (bool) - 若为True,使用ceil来计算输出shape。若为False,使用floor来计算输出shape。默认值:False。
|
||||
- **count_include_pad** (bool) - 如果为True,平均计算将包括零填充。默认值:True。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - shape为 :math:`(N, C_{in}, L_{in})` 的Tensor。
|
||||
- **x** (Tensor) - shape为 :math:`(N, C_{in}, L_{in})` 或 :math:`(C_{in}, L_{in})` 的Tensor。
|
||||
|
||||
输出:
|
||||
shape为 :math:`(N, C_{out}, L_{out})` 的Tensor。
|
||||
shape为 :math:`(N, C_{out}, L_{out})` 或 :math:`(C_{out}, L_{out})` 的Tensor。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `kernel_size` 或 `stride` 不是int。
|
||||
- **ValueError** - `pad_mode` 既不是"valid",也不是"same",不区分大小写。
|
||||
- **ValueError** - `pad_mode` 既不是"valid",也不是"same" 或者 "pad",不区分大小写。
|
||||
- **ValueError** - `kernel_size` 或 `stride` 小于1。
|
||||
- **ValueError** - `x` 的shape长度不等于3。
|
||||
- **ValueError** - `padding` 为tuple/list时长度不为1。
|
||||
- **ValueError** - `x` 的shape长度不等于2或3。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.AvgPool2d
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.nn.AvgPool2d(kernel_size=1, stride=1, pad_mode='valid', data_format='NCHW')
|
||||
.. py:class:: mindspore.nn.AvgPool2d(kernel_size=1, stride=1, pad_mode='valid', padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None, data_format='NCHW')
|
||||
|
||||
在输入Tensor上应用2D平均池化运算,可视为二维输入平面的组合。
|
||||
|
||||
|
@ -11,28 +11,32 @@ mindspore.nn.AvgPool2d
|
|||
\text{output}(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
|
||||
\text{input}(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
|
||||
|
||||
.. note::
|
||||
pad_mode仅支持"same"和"valid"。
|
||||
|
||||
参数:
|
||||
- **kernel_size** (Union[int, tuple[int]]) - 指定池化核尺寸大小。如果为整数,则代表池化核的高和宽。如果为tuple,其值必须包含两个整数值分别表示池化核的高和宽。默认值:1。
|
||||
- **stride** (Union[int, tuple[int]]) - 池化操作的移动步长,如果为整数,则代表池化核的高和宽方向的移动步长。如果为tuple,其值必须包含两个整数值分别表示池化核的高和宽的移动步长。默认值:1。
|
||||
- **pad_mode** (str) - 指定池化填充模式,可选值为"same"或"valid",不区分大小写。默认值:"valid"。
|
||||
- **pad_mode** (str) - 指定池化的填充方式,可选值为"same","valid"或"pad",不区分大小写。默认值:"valid"。
|
||||
|
||||
- same: 输出的宽度与输入整数 `stride` 后的值相同。
|
||||
- valid: 在不填充的前提下返回有效计算所得的输出。不满足计算的多余像素会被丢弃。
|
||||
- pad: 对输入进行填充。在输入的上下左右分别填充 `padding` 大小的0。如果设置此模式, `padding` 必须大于或等于0。
|
||||
|
||||
- **padding** (Union(int, tuple[int], list[int])) - 池化填充值。默认值:0。 `padding` 只能是一个整数或者包含一个或两个整数的元组,若 `padding` 为一个整数或者包含一个整数的tuple/list,则会分别在输入的上下左右四个方向进行 `padding` 次的填充,若 `padding` 为一个包含两个整数的tuple/list,则会在输入的上下进行 `padding[0]` 次的填充,在输入的左右进行 `padding[1]` 次的填充。
|
||||
- **ceil_mode** (bool) - 若为True,使用ceil来计算输出shape。若为False,使用floor来计算输出shape。默认值:False。
|
||||
- **count_include_pad** (bool) - 平均计算是否包括零填充。默认值:True。
|
||||
- **divisor_override** (int) - 如果被指定为非0参数,该参数将会在平均计算中被用作除数,否则将会使用 `kernel_size` 作为除数,默认值:None。
|
||||
- **data_format** (str) - 输入数据格式可为'NHWC'或'NCHW'。默认值:'NCHW'。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - 输入数据的shape为 :math:`(N,C_{in},H_{in},W_{in})` 的Tensor。
|
||||
- **x** (Tensor) - 输入数据的shape为 :math:`(N,C_{in},H_{in},W_{in})` 或 :math:`C_{in},H_{in},W_{in})` 的Tensor。
|
||||
|
||||
输出:
|
||||
输出数据的shape为 :math:`(N,C_{out},H_{out},W_{out})` 的Tensor。
|
||||
输出数据的shape为 :math:`(N,C_{out},H_{out},W_{out})` 或 :math:`(C_{out},H_{out},W_{out})` 的Tensor。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `kernel_size` 或 `strides` 既不是整数也不是元组。
|
||||
- **ValueError** - `pad_mode` 既不是'valid',也不是'same',不区分大小写。
|
||||
- **ValueError** - `pad_mode` 既不是"valid",也不是"same" 或者 "pad",不区分大小写。
|
||||
- **ValueError** - `data_format` 既不是'NCHW',也不是'NHWC'。
|
||||
- **ValueError** - `data_format` 为 'NHWC' 时,使用了 `padding` 或者 `ceil_mode` 或者 `count_include_pad` 或者 `divisor_override` 或者 `pad_mode` 为 `pad`。
|
||||
- **ValueError** - `kernel_size` 或 `stride` 小于1。
|
||||
- **ValueError** - `x` 的shape长度不等于4。
|
||||
- **ValueError** - `padding` 为tuple/list时长度不为1或2。
|
||||
- **ValueError** - `x` 的shape长度不等于3或4。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.AvgPool3d
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.nn.AvgPool3d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
|
||||
.. py:class:: mindspore.nn.AvgPool3d(kernel_size=1, stride=1, pad_mode='valid', padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
|
||||
|
||||
在一个输入Tensor上应用3D平均池化运算,输入Tensor可看成是由一系列3D平面组成的。
|
||||
|
||||
|
@ -16,9 +16,15 @@ mindspore.nn.AvgPool3d
|
|||
\text{input}(N_i, C_j, s_0 \times d + l, s_1 \times h + m, s_2 \times w + n)
|
||||
|
||||
参数:
|
||||
- **kernel_size** (Union[int, tuple[int]]) - 指定池化核尺寸大小。如果为int,则同时代表池化核的深度,高度和宽度。如果为tuple,其值必须包含三个int,分别表示池化核的深度,高度和宽度。取值必须为正整数。
|
||||
- **stride** (Union[int, tuple[int]]) - 池化操作的移动步长。如果为int,则同时代表池化核的深度,高度和宽度方向上的移动步长。如果为tuple,其值必须包含三个整数值,分别表示池化核的深度,高度和宽度方向上的移动步长。取值必须为正整数。如果值为None,则使用默认值 `kernel_size`。
|
||||
- **padding** (Union(int, tuple[int])) - 需要填充的pad值。取值不能为负数。如果 `padding` 为整数,则分别在头,尾,上,下,左,右都填充padding,如果 `padding` 是一个六个整数的元组,则分别在头,尾,上,下,左,右填充padding[0],padding[1],padding[2],padding[3],padding[4],padding[5]。默认值:0。
|
||||
- **kernel_size** (Union[int, tuple[int]]) - 指定池化核尺寸大小。如果为int,则同时代表池化核的深度,高度和宽度。如果为tuple,其值必须包含三个int,分别表示池化核的深度,高度和宽度。取值必须为正整数。默认值:1。
|
||||
- **stride** (Union[int, tuple[int]]) - 池化操作的移动步长。如果为int,则同时代表池化核的深度,高度和宽度方向上的移动步长。如果为tuple,其值必须包含三个整数值,分别表示池化核的深度,高度和宽度方向上的移动步长。取值必须为正整数。默认值:1。
|
||||
- **pad_mode** (str) - 指定池化的填充方式,可选值为"same","valid"或"pad",不区分大小写。默认值:"valid"。
|
||||
|
||||
- same: 输出的宽度与输入整数 `stride` 后的值相同。
|
||||
- valid: 在不填充的前提下返回有效计算所得的输出。不满足计算的多余像素会被丢弃。
|
||||
- pad: 对输入进行填充。在输入的前后上下左右分别填充 `padding` 大小的0。如果设置此模式, `padding` 必须大于或等于0。
|
||||
|
||||
- **padding** (Union(int, tuple[int], list[int])) - 池化填充值。默认值:0。 `padding` 只能是一个整数或者包含一个或三个整数的tuple/list,若 `padding` 为一个整数或包含一个整数的tuple/list,则会分别在输入的前后上下左右六个方向进行 `padding` 次的填充,若 `padding` 为一个包含三个整数的tuple/list,则会在输入的前后进行 `padding[0]` 次的填充,上下进行 `padding[1]` 次的填充,在输入的左右进行 `padding[2]` 次的填充。
|
||||
- **ceil_mode** (bool) - 若为True,使用ceil来计算输出shape。若为False,使用floor来计算输出shape。默认值:False。
|
||||
- **count_include_pad** (bool) - 平均计算是否包括零填充。默认值:True。
|
||||
- **divisor_override** (int) - 如果被指定为非0参数,该参数将会在平均计算中被用作除数,否则将会使用 `kernel_size` 作为除数,默认值:None。
|
||||
|
@ -27,15 +33,14 @@ mindspore.nn.AvgPool3d
|
|||
- **x** (Tensor) - shape为 :math:`(N, C, D_{in}, H_{in}, W_{in})` 或者 :math:`(C, D_{in}, H_{in}, W_{in})` 的Tensor。数据类型必须为float16或者float32。
|
||||
|
||||
输出:
|
||||
shape为 :math:`(N, C, D_{out}, H_{out}, W_{out})` 或者 :math:`(C, D_{in}, H_{in}, W_{in})` 的Tensor。数据类型与 `x` 一致。
|
||||
shape为 :math:`(N, C, D_{out}, H_{out}, W_{out})` 或者 :math:`(C, D_{out}, H_{out}, W_{out})` 的Tensor。数据类型与 `x` 一致。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `kernel_size` ,`stride` 或 `padding` 既不是整数也不是元组。
|
||||
- **TypeError** - `ceil_mode` 或 `count_include_pad` 不是布尔类型。
|
||||
- **TypeError** - `data_format` 不是字符串。
|
||||
- **TypeError** - `divisor_override` 不是整数。
|
||||
- **ValueError** - `kernel_size` 或者 `stride` 中的数字不是正数。
|
||||
- **ValueError** - `kernel_size` 或 `stride` 是一个长度不为3的tuple。
|
||||
- **ValueError** - `padding` 是一个长度不为6的tuple。
|
||||
- **ValueError** - `padding` 为一个tuple/list时,长度不为1或者3。
|
||||
- **ValueError** - `padding` 的元素小于0。
|
||||
- **ValueError** - `x` 的shape长度不等于5。
|
||||
- **ValueError** - `x` 的shape长度不等于4或5。
|
||||
|
|
|
@ -41,7 +41,7 @@ class _PoolNd(Cell):
|
|||
"""Initialize _PoolNd."""
|
||||
super(_PoolNd, self).__init__()
|
||||
validator.check_value_type('pad_mode', pad_mode, [str], self.cls_name)
|
||||
self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.cls_name)
|
||||
self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME', 'PAD'], 'pad_mode', self.cls_name)
|
||||
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.cls_name)
|
||||
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
||||
raise ValueError(f"For '{self.cls_name}, the 'NHWC' format only support in GPU target, but got device "
|
||||
|
@ -50,17 +50,17 @@ class _PoolNd(Cell):
|
|||
def _check_int_or_tuple(arg_name, arg_value):
|
||||
validator.check_value_type(arg_name, arg_value, [int, tuple], self.cls_name)
|
||||
error_msg = f"For '{self.cls_name}', the '{arg_name}' must be an positive int number or " \
|
||||
f"a tuple of two positive int numbers, but got {arg_value}"
|
||||
f"a tuple, but got {arg_value}"
|
||||
if isinstance(arg_value, int):
|
||||
if arg_value <= 0:
|
||||
raise ValueError(error_msg)
|
||||
elif len(arg_value) == 2:
|
||||
else:
|
||||
for item in arg_value:
|
||||
if isinstance(item, int) and item > 0:
|
||||
continue
|
||||
raise ValueError(error_msg)
|
||||
else:
|
||||
raise ValueError(error_msg)
|
||||
if len(arg_value) == 1:
|
||||
return arg_value[0]
|
||||
return arg_value
|
||||
|
||||
self.kernel_size = _check_int_or_tuple('kernel_size', kernel_size)
|
||||
|
@ -488,7 +488,37 @@ class MaxPool1d(_PoolNd):
|
|||
return output
|
||||
|
||||
|
||||
class AvgPool3d(Cell):
|
||||
def _cal_padding(padding, cls_name, nd):
|
||||
"""Calculate padding before call primitive"""
|
||||
validator.check_value_type('padding', padding, (int, tuple, list), cls_name)
|
||||
if isinstance(padding, int):
|
||||
padding = (0, 0) * (3 - nd) + (padding,) * nd * 2
|
||||
elif isinstance(padding, (tuple, list)):
|
||||
validator.check_non_negative_int_sequence(padding, "padding", cls_name)
|
||||
if len(padding) == nd:
|
||||
padding_start = (0, 0) * (3 - nd)
|
||||
padding_end = tuple(padding[i // 2] for i in range(nd * 2))
|
||||
padding = padding_start + padding_end
|
||||
elif len(padding) == 1:
|
||||
padding = (0, 0) * (3 - nd) + padding * nd * 2
|
||||
else:
|
||||
if nd == 1:
|
||||
raise ValueError(f"For {cls_name}, the padding must be a int or tuple contains one int, "
|
||||
f"but got tuple with length:{len(padding)}.")
|
||||
raise ValueError(f"For {cls_name}, the padding must be a int or tuple contains 1 or {nd} int, "
|
||||
f"but got tuple with length:{len(padding)}.")
|
||||
return padding
|
||||
|
||||
|
||||
def _check_tuple_length(arg_name, prim_name, length, cls_name):
|
||||
"""check the tuple length"""
|
||||
if len(arg_name) != length:
|
||||
raise ValueError(f"For {cls_name}, the length of {prim_name} must be equal to {length}, "
|
||||
f"but got {len(arg_name)}.")
|
||||
return arg_name
|
||||
|
||||
|
||||
class AvgPool3d(_PoolNd):
|
||||
r"""
|
||||
Applies a 3D average pooling over an input Tensor which can be regarded as a composition of 3D input planes.
|
||||
Typically the input is of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`, and AvgPool3D outputs
|
||||
|
@ -507,16 +537,28 @@ class AvgPool3d(Cell):
|
|||
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
|
||||
can be an int number that represents depth, height and width, or a tuple
|
||||
of three int numbers that represent depth, height and width respectively.
|
||||
The value must be a positive integer.
|
||||
The value must be a positive integer. Default: 1.
|
||||
stride (Union[int, tuple[int]]): The distance of kernel moving, can be an int number that represents
|
||||
the depth, height and width of movement, or a tuple of three int numbers that
|
||||
represent depth, height and width of movement respectively. The value must be a positive integer.
|
||||
If the value is None, the default value `kernel_size` is used.
|
||||
padding (Union(int, tuple[int])): The padding value to be filled. Default: 0. The value cannot be negative.
|
||||
If `padding` is an integer, the paddings of head, tail, top, bottom, left and right are the same,
|
||||
equal to padding.
|
||||
If `padding` is a tuple of six integers, the padding of head, tail, top, bottom, left and right
|
||||
equal to padding[0], padding[1], padding[2], padding[3], padding[4] and padding[5] correspondingly.
|
||||
If the value is None, the default value `kernel_size` is used. Default: 1.
|
||||
pad_mode (str): Specifies the padding method of pooling, optional values are "same", "valid" or "pad",
|
||||
case insensitive. Default: "valid".
|
||||
|
||||
- same: The output width is the same as the integer value after the input is multiplied by the stride.
|
||||
|
||||
- valid: Returns the output obtained by effective calculation without padding.
|
||||
The excess pixels that do not meet the calculation will be discarded.
|
||||
|
||||
- pad: Pads the input. Fill the front, back, top, and bottom of the input with 0s of size `padding`.
|
||||
If this mode is set, `padding` must be greater than or equal to 0.
|
||||
|
||||
padding (Union(int, tuple[int], list[int])): Pooling padding value. Default: 0.
|
||||
`padding` can only be an integer or a tuple/list containing one or three integers.
|
||||
If `padding` is an integer or a tuple/list containing one integer, it will be padded in six directions of
|
||||
front, back, top, bottom, left and right of the input. If `padding` is a tuple/list containing three
|
||||
integers, it will be padded in front and back of the input `padding[0]` times, up and down `padding[1]`
|
||||
times, and left and right of the input `padding[2]` times.
|
||||
ceil_mode (bool): If True, use ceil to compute the output shape instead of floor. Default: False.
|
||||
count_include_pad (bool): If True, averaging calculation will include the zero-padding. Default: True.
|
||||
divisor_override (int): If specified, it will be used as divisor in the averaging calculation,
|
||||
|
@ -533,14 +575,13 @@ class AvgPool3d(Cell):
|
|||
|
||||
Raises:
|
||||
TypeError: If `kernel_size`, `stride` or `padding` is neither an int nor a tuple.
|
||||
TypeError: If `ceil_mode` or `count_include_pad` is not a bool.
|
||||
TypeError: If `data_format` is not a string.
|
||||
TypeError: If `ceil_mode` or `count_include_pad` is not a bool.=
|
||||
TypeError: If `divisor_override` is not an int.
|
||||
ValueError: If numbers in `kernel_size` or `stride` are not positive.
|
||||
ValueError: If `kernel_size` or `stride` is a tuple whose length is not equal to 3.
|
||||
ValueError: If `padding` is a tuple whose length is not equal to 6.
|
||||
ValueError: If `padding` is a tuple/list whose length is neither 1 nor 3.
|
||||
ValueError: If element of `padding` is less than 0.
|
||||
ValueError: If length of shape of `x` is not equal to 5.
|
||||
ValueError: If length of shape of `x` is neither 4 nor 5.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -548,34 +589,36 @@ class AvgPool3d(Cell):
|
|||
Examples:
|
||||
>>> import mindspore as ms
|
||||
>>> import mindspore.nn as nn
|
||||
>>> import numpy as np
|
||||
>>> import mindspore.ops as ops
|
||||
>>> pool = nn.AvgPool3d(kernel_size=3, stride=1)
|
||||
>>> x = ms.Tensor(np.random.randint(0, 10, [1, 2, 4, 4, 5]), ms.float32)
|
||||
>>> x = ops.randn(1, 2, 4, 4, 5).astype(ms.float32)
|
||||
>>> output = pool(x)
|
||||
>>> print(output.shape)
|
||||
(1, 2, 2, 2, 3)
|
||||
>>> x1 = ops.randn(6, 5, 7, 7, 5).astype(ms.float32)
|
||||
>>> pool2 = nn.AvgPool3d(4, stride=2, pad_mode='pad', padding=(2, 2, 1), divisor_override=10)
|
||||
>>> output2 = pool2(x1)
|
||||
>>> print(output2.shape)
|
||||
(6, 5, 4, 4, 2)
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True,
|
||||
def __init__(self, kernel_size=1, stride=1, pad_mode="valid", padding=0, ceil_mode=False, count_include_pad=True,
|
||||
divisor_override=None):
|
||||
"""Initialize AvgPool3d."""
|
||||
super(AvgPool3d, self).__init__()
|
||||
stride = stride if (stride is not None) else kernel_size
|
||||
if not divisor_override:
|
||||
divisor_override = 0
|
||||
self.avg_pool = P.AvgPool3D(kernel_size, stride, "pad", padding, ceil_mode, count_include_pad,
|
||||
super(AvgPool3d, self).__init__(kernel_size, stride, pad_mode)
|
||||
padding = _cal_padding(padding, self.cls_name, 3)
|
||||
divisor_override = 0 if divisor_override is None else divisor_override
|
||||
self.avg_pool = P.AvgPool3D(self.kernel_size, self.stride, pad_mode, padding, ceil_mode, count_include_pad,
|
||||
divisor_override)
|
||||
self.squeeze = P.Squeeze(0)
|
||||
self.expand_dims = P.ExpandDims()
|
||||
|
||||
def construct(self, x):
|
||||
_is_squeeze = False
|
||||
expand_batch = False
|
||||
if len(x.shape) == 4:
|
||||
x = self.expand_dims(x, 0)
|
||||
_is_squeeze = True
|
||||
x = x.unsqueeze(0)
|
||||
expand_batch = True
|
||||
out = self.avg_pool(x)
|
||||
if _is_squeeze:
|
||||
out = self.squeeze(out)
|
||||
if expand_batch:
|
||||
out = out.squeeze(0)
|
||||
return out
|
||||
|
||||
|
||||
|
@ -591,9 +634,6 @@ class AvgPool2d(_PoolNd):
|
|||
\text{output}(N_i, C_j, h, w) = \frac{1}{h_{ker} * w_{ker}} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1}
|
||||
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
|
||||
|
||||
Note:
|
||||
pad_mode for training only supports "same" and "valid".
|
||||
|
||||
Args:
|
||||
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value.
|
||||
The data type of kernel_size must be int and the value represents the height and width,
|
||||
|
@ -602,58 +642,121 @@ class AvgPool2d(_PoolNd):
|
|||
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||
the height and width of movement are both strides, or a tuple of two int numbers that
|
||||
represent height and width of movement respectively. Default: 1.
|
||||
pad_mode (str): The optional value for pad mode, is "same" or "valid", not case sensitive.
|
||||
Default: "valid".
|
||||
pad_mode (str) - Specifies the padding method of pooling, optional values are "same", "valid" or "pad",
|
||||
case insensitive. Default: "valid".
|
||||
|
||||
- same: Adopts the way of completion. The height and width of the output will be the same as
|
||||
the input. The total number of padding will be calculated in horizontal and vertical
|
||||
directions and evenly distributed to top and bottom, left and right if possible.
|
||||
Otherwise, the last extra padding will be done from the bottom and the right side.
|
||||
- same: The output width is the same as the integer value after the input is multiplied by the stride.
|
||||
|
||||
- valid: Adopts the way of discarding. The possible largest height and width of output
|
||||
will be returned without padding. Extra pixels will be discarded.
|
||||
- valid: Returns the output obtained by effective calculation without padding.
|
||||
The excess pixels that do not meet the calculation will be discarded.
|
||||
|
||||
- pad: pads the input. Pads the top, bottom, left, and right sides of the input with `padding` number of
|
||||
zeros. If this mode is set, `padding` must be greater than or equal to 0.
|
||||
|
||||
padding (Union[int, tuple[int], list[int]]): Specifies the padding value of the pooling operation. Default: 0.
|
||||
`padding` can only be an integer or a tuple/list containing one or two integers. If `padding` is an integer
|
||||
or a tuple/list containing one integer, it will be padded `padding` times in the four directions of the
|
||||
input. If `padding` is a tuple/list containing two integers, it will be padded `padding[0]` times in the
|
||||
up-down direction of the input and `padding[1]` times in the left-right direction of the input.
|
||||
ceil_mode (bool): If True, use ceil to compute the output shape instead of floor. Default: False.
|
||||
count_include_pad (bool): If True, averaging calculation will include the zero-padding. Default: True.
|
||||
divisor_override (int): If specified, it will be used as divisor in the averaging calculation,
|
||||
otherwise kernel_size will be used. Default: None.
|
||||
data_format (str): The optional value for data format, is 'NHWC' or 'NCHW'.
|
||||
Default: 'NCHW'.
|
||||
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`C_{in},H_{in},W_{in})`.
|
||||
|
||||
Outputs:
|
||||
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out},H_{out},W_{out})`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `kernel_size` or `strides` is neither int nor tuple.
|
||||
ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive.
|
||||
ValueError: If `pad_mode` is not 'valid' ,'same' or 'pad' with not case sensitive.
|
||||
ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
|
||||
ValueError: If `padding`, `ceil_mode`, `count_include_pad`, or `divisor_override` is used
|
||||
or `pad_mode` is `pad` when `data_format` is 'NHWC'.
|
||||
ValueError: If `kernel_size` or `strides` is less than 1.
|
||||
ValueError: If length of shape of `x` is not equal to 4.
|
||||
ValueError: If length of `padding` tuple/list is not 1 or 2.
|
||||
ValueError: If length of shape of `x` is not equal to 3 or 4.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore as ms
|
||||
>>> import mindspore.nn as nn
|
||||
>>> import mindspore.ops as ops
|
||||
>>> import numpy as np
|
||||
>>> pool = nn.AvgPool2d(kernel_size=3, stride=1)
|
||||
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
||||
>>> x = ms.Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), ms.float32)
|
||||
>>> output = pool(x)
|
||||
>>> print(output.shape)
|
||||
(1, 2, 2, 2)
|
||||
>>> x = ops.randn(6, 6, 8, 8)
|
||||
>>> pool2 = nn.AvgPool2d(4, stride=1, pad_mode='pad', padding=2, divisor_override=5)
|
||||
>>> output2 = pool2(x)
|
||||
>>> print(output2.shape)
|
||||
(6, 6, 9, 9)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
pad_mode="valid",
|
||||
padding=0,
|
||||
ceil_mode=False,
|
||||
count_include_pad=True,
|
||||
divisor_override=None,
|
||||
data_format="NCHW"):
|
||||
"""Initialize AvgPool2d."""
|
||||
super(AvgPool2d, self).__init__(kernel_size, stride, pad_mode, data_format)
|
||||
self.avg_pool = P.AvgPool(kernel_size=self.kernel_size,
|
||||
strides=self.stride,
|
||||
pad_mode=self.pad_mode,
|
||||
data_format=self.format)
|
||||
if pad_mode == 'pad' or padding != 0 or ceil_mode or not count_include_pad or divisor_override is not None:
|
||||
if self.format == "NHWC":
|
||||
raise ValueError(f"For '{self.cls_name}, the 'NHWC' format are not support when 'padding' is not 0 "
|
||||
f"or 'ceil_mode' is not False or 'count_include_pad' is not True "
|
||||
f"or divisor_override is not None, but got padding:{padding}, ceil_mode:{ceil_mode}, "
|
||||
f"count_include_pad:{count_include_pad}, divisor_override:{divisor_override}.")
|
||||
self.is_expand = True
|
||||
divisor_override = 0 if divisor_override is None else divisor_override
|
||||
padding = _cal_padding(padding, self.cls_name, 2)
|
||||
|
||||
if isinstance(self.kernel_size, tuple):
|
||||
_check_tuple_length(self.kernel_size, 'kernel_size', 2, self.cls_name)
|
||||
kernel_size = (1,) + self.kernel_size
|
||||
elif isinstance(self.kernel_size, int):
|
||||
kernel_size = (1, self.kernel_size, self.kernel_size)
|
||||
|
||||
if isinstance(self.stride, tuple):
|
||||
_check_tuple_length(self.stride, 'stride', 2, self.cls_name)
|
||||
stride = (1,) + self.stride
|
||||
elif isinstance(self.stride, int):
|
||||
stride = (1, self.stride, self.stride)
|
||||
self.avg_pool = P.AvgPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad=padding,
|
||||
ceil_mode=ceil_mode,
|
||||
count_include_pad=count_include_pad, divisor_override=divisor_override)
|
||||
else:
|
||||
self.is_expand = False
|
||||
self.avg_pool = P.AvgPool(kernel_size=self.kernel_size,
|
||||
strides=self.stride,
|
||||
pad_mode=self.pad_mode,
|
||||
data_format=self.format)
|
||||
|
||||
def construct(self, x):
|
||||
return self.avg_pool(x)
|
||||
expand_batch = False
|
||||
if x.ndim == 3:
|
||||
x = x.unsqueeze(0)
|
||||
expand_batch = True
|
||||
if self.is_expand:
|
||||
x = x.unsqueeze(2)
|
||||
out = self.avg_pool(x)
|
||||
res = out.squeeze(2)
|
||||
else:
|
||||
res = self.avg_pool(x)
|
||||
if expand_batch:
|
||||
res = res.squeeze(0)
|
||||
return res
|
||||
|
||||
|
||||
class AvgPool1d(_PoolNd):
|
||||
|
@ -675,76 +778,111 @@ class AvgPool1d(_PoolNd):
|
|||
kernel_size (int): The size of kernel window used to take the average value, Default: 1.
|
||||
stride (int): The distance of kernel moving, an int number that represents
|
||||
the width of movement is strides, Default: 1.
|
||||
pad_mode (str): The optional value for pad mode, is "same" or "valid", not case sensitive.
|
||||
Default: "valid".
|
||||
pad_mode (str) - Specifies the padding method of pooling, optional values are "same", "valid" or "pad",
|
||||
case insensitive. Default: "valid".
|
||||
|
||||
- same: Adopts the way of completion. The height and width of the output will be the same as
|
||||
the input. The total number of padding will be calculated in horizontal and vertical
|
||||
directions and evenly distributed to top and bottom, left and right if possible.
|
||||
Otherwise, the last extra padding will be done from the bottom and the right side.
|
||||
- same: The output width is the same as the integer value after the input is multiplied by the stride.
|
||||
|
||||
- valid: Adopts the way of discarding. The possible largest height and width of output
|
||||
will be returned without padding. Extra pixels will be discarded.
|
||||
- valid: Returns the output obtained by effective calculation without padding.
|
||||
The excess pixels that do not meet the calculation will be discarded.
|
||||
|
||||
- pad: Performs padding on the input. Adds padding size of zeros to both ends of the input.
|
||||
If this mode is set, padding must be greater than or equal to 0.
|
||||
|
||||
padding (Union(int, tuple[int], list[int])): Padding value for the pooling. Default value is 0.
|
||||
padding can only be an integer or a tuple/list containing a single integer, in which case padding times or
|
||||
padding[0] times are padded on both sides of the input.
|
||||
ceil_mode (bool): If True, use ceil to compute the output shape instead of floor. Default: False.
|
||||
count_include_pad (bool): If True, averaging calculation will include the zero-padding. Default: True.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})`.
|
||||
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`.
|
||||
|
||||
Outputs:
|
||||
Tensor of shape :math:`(N, C_{out}, L_{out})`.
|
||||
Tensor of shape :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `kernel_size` or `stride` is not an int.
|
||||
ValueError: If `pad_mode` is neither 'same' nor 'valid' with not case sensitive.
|
||||
ValueError: If `pad_mode` is not 'valid' ,'same' or 'pad' with not case sensitive.
|
||||
ValueError: If `kernel_size` or `strides` is less than 1.
|
||||
ValueError: If length of shape of `x` is not equal to 3.
|
||||
ValueError: If length of `padding` tuple/list is not 1.
|
||||
ValueError: If length of shape of `x` is not equal to 2 or 3.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore as ms
|
||||
>>> import mindspore.nn as nn
|
||||
>>> import mindspore.ops as ops
|
||||
>>> import numpy as np
|
||||
>>> pool = nn.AvgPool1d(kernel_size=6, stride=1)
|
||||
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
||||
>>> x = ms.Tensor(np.random.randint(0, 10, [1, 3, 6]), ms.float32)
|
||||
>>> output = pool(x)
|
||||
>>> result = output.shape
|
||||
>>> print(result)
|
||||
(1, 3, 1)
|
||||
>>> pool2 = nn.AvgPool1d(4, stride=1, ceil_mode=True, pad_mode='pad', padding=2)
|
||||
>>> x1 = ops.randn(6, 6, 8)
|
||||
>>> output = pool2(x1)
|
||||
>>> print(output.shape)
|
||||
(6, 6, 9)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
pad_mode="valid"):
|
||||
pad_mode="valid",
|
||||
padding=0,
|
||||
ceil_mode=False,
|
||||
count_include_pad=True):
|
||||
"""Initialize AvgPool1d."""
|
||||
validator.check_value_type('kernel_size', kernel_size, [int], self.cls_name)
|
||||
validator.check_value_type('stride', stride, [int], self.cls_name)
|
||||
validator.check_value_type('pad_mode', pad_mode, [str], self.cls_name)
|
||||
self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.cls_name)
|
||||
validator.check_int(kernel_size, 1, Rel.GE, "kernel_size", self.cls_name)
|
||||
validator.check_int(stride, 1, Rel.GE, "stride", self.cls_name)
|
||||
super(AvgPool1d, self).__init__(kernel_size, stride, pad_mode)
|
||||
self.kernel_size = (1, kernel_size)
|
||||
self.stride = (1, stride)
|
||||
self.avg_pool = P.AvgPool(kernel_size=self.kernel_size,
|
||||
strides=self.stride,
|
||||
pad_mode=self.pad_mode)
|
||||
self.shape = F.shape
|
||||
self.reduce_mean = P.ReduceMean(keep_dims=True)
|
||||
self.slice = P.Slice()
|
||||
self.expand = P.ExpandDims()
|
||||
self.squeeze = P.Squeeze(2)
|
||||
validator.check_int(self.kernel_size, 1, Rel.GE, "kernel_size", self.cls_name)
|
||||
validator.check_int(self.stride, 1, Rel.GE, "stride", self.cls_name)
|
||||
if pad_mode == 'pad' or padding != 0 or ceil_mode or not count_include_pad:
|
||||
padding = _cal_padding(padding, self.cls_name, 1)
|
||||
self.is_expand_3d = True
|
||||
kernel_size = (1, 1, self.kernel_size)
|
||||
stride = (1, 1, self.stride)
|
||||
self.avg_pool = P.AvgPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad=padding,
|
||||
ceil_mode=ceil_mode,
|
||||
count_include_pad=count_include_pad)
|
||||
else:
|
||||
self.is_expand_3d = False
|
||||
self.kernel_size = (1, self.kernel_size)
|
||||
self.stride = (1, self.stride)
|
||||
self.avg_pool = P.AvgPool(kernel_size=self.kernel_size,
|
||||
strides=self.stride,
|
||||
pad_mode=self.pad_mode)
|
||||
self.shape = F.shape
|
||||
self.reduce_mean = P.ReduceMean(keep_dims=True)
|
||||
self.slice = P.Slice()
|
||||
self.expand = P.ExpandDims()
|
||||
self.squeeze = P.Squeeze(2)
|
||||
|
||||
def construct(self, x):
|
||||
batch, channel, width = self.shape(x)
|
||||
if width == self.kernel_size[1]:
|
||||
x = self.reduce_mean(x, 2)
|
||||
elif width - self.kernel_size[1] < self.stride[1]:
|
||||
x = self.slice(x, (0, 0, 0), (batch, channel, self.kernel_size[1]))
|
||||
x = self.reduce_mean(x, 2)
|
||||
else:
|
||||
x = self.expand(x, 2)
|
||||
expand_batch = False
|
||||
if x.ndim == 2:
|
||||
x = x.unsqueeze(0)
|
||||
expand_batch = True
|
||||
if self.is_expand_3d:
|
||||
x = x.unsqueeze(2).unsqueeze(3)
|
||||
x = self.avg_pool(x)
|
||||
x = self.squeeze(x)
|
||||
x = x.squeeze(3).squeeze(2)
|
||||
else:
|
||||
batch, channel, width = self.shape(x)
|
||||
if width == self.kernel_size[1]:
|
||||
x = self.reduce_mean(x, 2)
|
||||
elif width - self.kernel_size[1] < self.stride[1]:
|
||||
x = self.slice(x, (0, 0, 0), (batch, channel, self.kernel_size[1]))
|
||||
x = self.reduce_mean(x, 2)
|
||||
else:
|
||||
x = self.expand(x, 2)
|
||||
x = self.avg_pool(x)
|
||||
x = self.squeeze(x)
|
||||
if expand_batch:
|
||||
x = x.squeeze(0)
|
||||
return x
|
||||
|
||||
|
||||
|
@ -1443,6 +1581,7 @@ class MaxUnpool1d(Cell):
|
|||
>>> print(output.asnumpy())
|
||||
[[0. 2. 0. 4. 0. 6. 0. 8.]]
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size, stride=None, padding=0):
|
||||
"""Initialize MaxUnpool1d."""
|
||||
super(MaxUnpool1d, self).__init__()
|
||||
|
@ -1530,6 +1669,7 @@ class MaxUnpool2d(Cell):
|
|||
[[[[0. 1.]
|
||||
[8. 9.]]]]
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size, stride=None, padding=0):
|
||||
"""Initialize MaxUnpool2d."""
|
||||
super(MaxUnpool2d, self).__init__()
|
||||
|
@ -1620,6 +1760,7 @@ class MaxUnpool3d(Cell):
|
|||
[[[[[0. 1.]
|
||||
[8. 9.]]]]]
|
||||
"""
|
||||
|
||||
def __init__(self, kernel_size, stride=None, padding=0):
|
||||
super(MaxUnpool3d, self).__init__()
|
||||
if stride is None:
|
||||
|
|
|
@ -5563,7 +5563,7 @@ def lp_pool1d(x, norm_type, kernel_size, stride=None, ceil_mode=False):
|
|||
|
||||
def lp_pool2d(x, norm_type, kernel_size, stride=None, ceil_mode=False):
|
||||
r"""
|
||||
Applying 2D LPPooling operation on an input Tensor can be regarded as forming a 1D input plane.
|
||||
Applying 2D LPPooling operation on an input Tensor can be regarded as forming a 2D input plane.
|
||||
|
||||
Typically the input is of shape :math:`(N, C, H_{in}, W_{in})`, the output is of shape
|
||||
:math:`(N, C, H_{in}, W_{in})`, with the same shape as input, the operation is as follows.
|
||||
|
|
|
@ -7496,10 +7496,10 @@ class AvgPool3D(Primitive):
|
|||
|
||||
- pad: Implicit paddings on both sides of the input in depth, height, width. The number of `pad` will
|
||||
be padded to the input Tensor borders. `pad` must be greater than or equal to 0.
|
||||
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
|
||||
head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six
|
||||
integers, the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2],
|
||||
pad[3], pad[4] and pad[5] correspondingly.
|
||||
pad (Union(int, tuple[int], list[int])): The pad value to be filled. Default: 0. If `pad` is an integer,
|
||||
the paddings of head, tail, top, bottom, left and right are the same, equal to pad.
|
||||
If `pad` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equal to
|
||||
pad[0], pad[1], pad[2], pad[3], pad[4] and pad[5] correspondingly.
|
||||
ceil_mode (bool): If True, ceil instead of floor to compute the output shape. Default: False.
|
||||
count_include_pad (bool): If True, averaging calculation will include the zero-padding. Default: True.
|
||||
divisor_override (int): If specified, it will be used as divisor in the averaging calculation,
|
||||
|
@ -7547,7 +7547,7 @@ class AvgPool3D(Primitive):
|
|||
self.add_prim_attr('kernel_size', self.kernel_size)
|
||||
self.strides = _check_3d_int_or_tuple('strides', strides, self.name, ret_five=True)
|
||||
self.add_prim_attr('strides', self.strides)
|
||||
validator.check_value_type('pad', pad, (int, tuple), self.name)
|
||||
validator.check_value_type('pad', pad, (int, tuple, list), self.name)
|
||||
if isinstance(pad, int):
|
||||
pad = (pad,) * 6
|
||||
if len(pad) != 6:
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, kernel_size=1, stride=1, pad_mode="valid", padding=0, ceil_mode=False, count_include_pad=True):
|
||||
super(Net, self).__init__()
|
||||
self.pool = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, pad_mode=pad_mode, padding=padding,
|
||||
ceil_mode=ceil_mode, count_include_pad=count_include_pad)
|
||||
|
||||
def construct(self, x):
|
||||
out = self.pool(x)
|
||||
return out
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_avgpool1d_normal(mode):
|
||||
"""
|
||||
Feature: AvgPool1d
|
||||
Description: Verify the result of AvgPool1d
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x1 = ms.Tensor(np.random.randint(0, 10, [1, 3, 6]), ms.float32)
|
||||
pool1 = Net(kernel_size=6, stride=1)
|
||||
output1 = pool1(x1)
|
||||
|
||||
x2 = ops.randn(6, 6, 8)
|
||||
pool2 = Net(4, stride=1, ceil_mode=True, pad_mode='pad', padding=2)
|
||||
output2 = pool2(x2)
|
||||
|
||||
assert output1.shape == (1, 3, 1)
|
||||
assert output2.shape == (6, 6, 9)
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, kernel_size=1, stride=1, pad_mode="valid", padding=0, ceil_mode=False, count_include_pad=True,
|
||||
divisor_override=None, data_format='NCHW'):
|
||||
super(Net, self).__init__()
|
||||
self.pool = nn.AvgPool2d(kernel_size=kernel_size, stride=stride, pad_mode=pad_mode, padding=padding,
|
||||
ceil_mode=ceil_mode, count_include_pad=count_include_pad,
|
||||
divisor_override=divisor_override, data_format=data_format)
|
||||
|
||||
def construct(self, x):
|
||||
out = self.pool(x)
|
||||
return out
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_avgpool2d_normal(mode):
|
||||
"""
|
||||
Feature: AvgPool2d
|
||||
Description: Verify the result of AvgPool2d
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x1 = ms.Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), ms.float32)
|
||||
pool1 = Net(kernel_size=3, stride=1)
|
||||
output1 = pool1(x1)
|
||||
|
||||
x2 = ops.randn(6, 6, 8, 8)
|
||||
pool2 = Net(kernel_size=4, stride=1, pad_mode='pad', padding=2, divisor_override=5)
|
||||
output2 = pool2(x2)
|
||||
|
||||
assert output1.shape == (1, 2, 2, 2)
|
||||
assert output2.shape == (6, 6, 9, 9)
|
|
@ -13,17 +13,20 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
def __init__(self, kernel_size=1, stride=1, pad_mode="valid", padding=0, ceil_mode=False, count_include_pad=True,
|
||||
divisor_override=None):
|
||||
super(Net, self).__init__()
|
||||
self.pool = nn.AvgPool3d(kernel_size=3, stride=1)
|
||||
self.pool = nn.AvgPool3d(kernel_size=kernel_size, stride=stride, pad_mode=pad_mode, padding=padding,
|
||||
ceil_mode=ceil_mode, count_include_pad=count_include_pad,
|
||||
divisor_override=divisor_override)
|
||||
|
||||
def construct(self, x):
|
||||
out = self.pool(x)
|
||||
|
@ -33,6 +36,7 @@ class Net(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -44,12 +48,13 @@ def test_avgpool3d_normal(mode):
|
|||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
np_array = np.arange(1 * 2 * 4 * 4 * 5).reshape((1, 2, 4, 4, 5))
|
||||
net = Net()
|
||||
x = ms.Tensor(np_array, ms.float32)
|
||||
output = net(x)
|
||||
expect_output = np.array([[[[[26.0, 27.0, 28.0], [31.0, 32.0, 33.0]], [[46.0, 47.0, 48.0], [51.0, 52.0, 53.0]]],
|
||||
[[[106.0, 107.0, 108.0], [111.0, 112.0, 113.0]],
|
||||
[[126.0, 127.0, 128.0], [131.0, 132.0, 133.0]]]]])
|
||||
assert output.shape == (1, 2, 2, 2, 3)
|
||||
assert np.allclose(output.asnumpy(), expect_output, rtol=1e-3)
|
||||
x1 = ops.randn(1, 2, 4, 4, 5).astype(ms.float32)
|
||||
pool1 = Net(kernel_size=3, stride=1)
|
||||
output1 = pool1(x1)
|
||||
|
||||
x2 = ops.randn(6, 5, 7, 7, 5).astype(ms.float32)
|
||||
pool2 = Net(kernel_size=4, stride=2, pad_mode='pad', padding=(2, 2, 1), divisor_override=10)
|
||||
output2 = pool2(x2)
|
||||
|
||||
assert output1.shape == (1, 2, 2, 2, 3)
|
||||
assert output2.shape == (6, 5, 4, 4, 2)
|
||||
|
|
Loading…
Reference in New Issue