simple_pose 310 infer

modified:   README.md
        modified:   ascend310_infer/CMakeLists.txt
        modified:   postprocess.py
        modified:   preprocess.py
This commit is contained in:
zhangxiaoxiao 2021-06-18 10:18:17 +08:00
parent 48e384c5bd
commit 47950370c3
11 changed files with 692 additions and 0 deletions

View File

@ -17,6 +17,10 @@
- [Training](#training)
- [Distributed Training](#distributed-training)
- [Evaluation Process](#evaluation-process)
- [Inference Process](#inference-process)
- [Export MindIR](#export-mindir)
- [Infer on Ascend310](#infer-on-ascend310)
- [result](#result)
- [Model Description](#model-description)
- [Performance](#performance)
- [Description of Random Situation](#description-of-random-situation)
@ -365,6 +369,38 @@ Total boxes: 104125
...
```
## Inference Process
### [Export MindIR](#contents)
```shell
python export.py
```
The `TEST.MODEL_FILE` parameter is required
`FILE_FORMAT` should be in ["AIR", "MINDIR"]
### Infer on Ascend310
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
When the network processes datasets, if the last batch is insufficient, it will not be automatically supplemented, in a nutshell, batch_Size set to 1 will go better.
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
```
- `NEED_PREPROCESS` means weather the dataset is processed in binary format, it's value is 'y' or 'n'.
- `DEVICE_ID` is optional, default value is 0.
### result
Inference result is saved in current path, you can find result like this in acc.log file.
```bash
AP: 0.7036180026660003
```
# [Model Description](#contents)
## [Performance](#contents)

View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)

View File

@ -0,0 +1,29 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

View File

@ -0,0 +1,32 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
#endif

View File

@ -0,0 +1,130 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/dataset/execute.h"
#include "include/dataset/vision.h"
#include "inc/utils.h"
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::MSTensor;
using mindspore::dataset::Execute;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(input0_path, ".", "input0 path");
DEFINE_int32(device_id, 0, "device id");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
auto input0_files = GetAllFiles(FLAGS_input0_path);
if (input0_files.empty()) {
std::cout << "ERROR: input data empty." << std::endl;
return 1;
}
std::map<double, double> costTime_map;
size_t size = input0_files.size();
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << input0_files[i] << std::endl;
auto input0 = ReadFileToTensor(input0_files[i]);
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
input0.Data().get(), input0.DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << input0_files[i] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(input0_files[i], outputs);
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}

View File

@ -0,0 +1,129 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE * outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}

View File

@ -69,6 +69,14 @@ TEST:
BBOX_THRE: 1.0
IMAGE_THRE: 0.0
NMS_THRE: 1.0
#export-related
EXPORT:
FILE_NAME: 'simple_pose'
FILE_FORMAT: 'MINDIR'
#310 infer-related
INFER:
PRE_RESULT_PATH: './preprocess_Result'
POST_RESULT_PATH: './result_Files'
---
# Help description for each configuration

View File

@ -0,0 +1,41 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore import Tensor, float32, context
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.model import get_pose_net
from src.model_utils.config import config
from src.model_utils.device_adapter import get_device_id
if __name__ == '__main__':
# set context
device_id = get_device_id()
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend", save_graphs=False, device_id=device_id)
# init model
model = get_pose_net(config, is_train=False)
model.set_train(False)
# load parameters
ckpt_file = config.TEST.MODEL_FILE
print('loading model ckpt from {}'.format(ckpt_file))
load_param_into_net(model, load_checkpoint(ckpt_file))
input_shape = [config.TEST.BATCH_SIZE, 3, config.MODEL.IMAGE_SIZE[1], config.MODEL.IMAGE_SIZE[0]]
input_ids = Tensor(np.zeros(input_shape), float32)
export(model, input_ids, file_name=config.EXPORT.FILE_NAME, file_format=config.EXPORT.FILE_FORMAT)

View File

@ -0,0 +1,89 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
from src.evaluate.coco_eval import evaluate
from src.utils.transform import flip_back
from src.predict import get_final_preds
from src.dataset import flip_pairs
from src.model_utils.config import config
def get_acc():
'''calculate accuracy'''
ckpt_file = config.TEST.MODEL_FILE
output_dir = ckpt_file.split('.')[0]
if config.enable_modelarts:
output_dir = config.output_path
cfg = config
# init record
file_num = len(os.listdir(config.INFER.POST_RESULT_PATH)) // 2
num_samples = file_num * cfg.TEST.BATCH_SIZE
all_preds = np.zeros((num_samples, cfg.MODEL.NUM_JOINTS, 3),
dtype=np.float32)
all_boxes = np.zeros((num_samples, 2))
image_id = []
idx = 0
bs = config.TEST.BATCH_SIZE
h, w = config.POSE_RESNET.HEATMAP_SIZE[1], config.POSE_RESNET.HEATMAP_SIZE[0]
shape = [bs, config.MODEL.NUM_JOINTS, h, w]
for i in range(file_num):
f = os.path.join(config.INFER.POST_RESULT_PATH, "sp_bs" + str(bs) + "_" + str(i) + "_0.bin")
output = np.fromfile(f, np.float32).reshape(shape)
if cfg.TEST.FLIP_TEST:
f = os.path.join(config.INFER.POST_RESULT_PATH, "sp_flip_bs" + str(bs) + "_" + str(i) + "_0.bin")
output_flipped = np.fromfile(f, np.float32).reshape(shape)
output_flipped = flip_back(output_flipped, flip_pairs)
# feature is not aligned, shift flipped heatmap for higher accuracy
if cfg.TEST.SHIFT_HEATMAP:
output_flipped[:, :, :, 1:] = \
output_flipped.copy()[:, :, :, 0:-1]
output = (output + output_flipped) * 0.5
# meta data
center_path = os.path.join(config.INFER.PRE_RESULT_PATH, "center")
scale_path = os.path.join(config.INFER.PRE_RESULT_PATH, "scale")
score_path = os.path.join(config.INFER.PRE_RESULT_PATH, "score")
id_path = os.path.join(config.INFER.PRE_RESULT_PATH, "id")
file_name = "sp_bs" + str(bs) + "_" + str(i) + ".npy"
c = np.load(os.path.join(center_path, file_name))
s = np.load(os.path.join(scale_path, file_name))
score = np.load(os.path.join(score_path, file_name))
file_id = np.load(os.path.join(id_path, file_name))
# pred by heatmaps
preds, maxvals = get_final_preds(cfg, output.copy(), c, s)
num_images, _ = preds.shape[:2]
all_preds[idx:idx + num_images, :, 0:2] = preds[:, :, 0:2]
all_preds[idx:idx + num_images, :, 2:3] = maxvals
# double check this all_boxes parts
all_boxes[idx:idx + num_images, 0] = np.prod(s * 200, 1)
all_boxes[idx:idx + num_images, 1] = score
image_id.extend(file_id)
idx += num_images
print(all_preds[:idx].shape, all_boxes[:idx].shape, len(image_id))
_, perf_indicator = evaluate(
cfg, all_preds[:idx], output_dir, all_boxes[:idx], image_id)
print("AP:", perf_indicator)
if __name__ == '__main__':
get_acc()

View File

@ -0,0 +1,64 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
from src.dataset import keypoint_dataset
from src.model_utils.config import config
def get_bin():
''' get bin files'''
valid_dataset, _ = keypoint_dataset(
config,
bbox_file=config.TEST.COCO_BBOX_FILE,
train_mode=False,
num_parallel_workers=config.TEST.DATALOADER_WORKERS,
)
inputs_path = os.path.join(config.INFER.PRE_RESULT_PATH, "00_data")
os.makedirs(inputs_path)
center_path = os.path.join(config.INFER.PRE_RESULT_PATH, "center")
os.makedirs(center_path)
scale_path = os.path.join(config.INFER.PRE_RESULT_PATH, "scale")
os.makedirs(scale_path)
score_path = os.path.join(config.INFER.PRE_RESULT_PATH, "score")
os.makedirs(score_path)
id_path = os.path.join(config.INFER.PRE_RESULT_PATH, "id")
os.makedirs(id_path)
for i, item in enumerate(valid_dataset.create_dict_iterator(output_numpy=True)):
file_name = "sp_bs" + str(config.TEST.BATCH_SIZE) + "_" + str(i) + ".bin"
# input data
inputs = item['image']
inputs_file_path = os.path.join(inputs_path, file_name)
inputs.tofile(inputs_file_path)
if config.TEST.FLIP_TEST:
inputs_flipped = inputs[:, :, :, ::-1]
file_name = "sp_flip_bs" + str(config.TEST.BATCH_SIZE) + "_" + str(i) + ".bin"
inputs_file_path = os.path.join(inputs_path, file_name)
inputs_flipped.tofile(inputs_file_path)
file_name = "sp_bs" + str(config.TEST.BATCH_SIZE) + "_" + str(i) + ".npy"
np.save(os.path.join(center_path, file_name), item['center'])
np.save(os.path.join(scale_path, file_name), item['scale'])
np.save(os.path.join(score_path, file_name), item['score'])
np.save(os.path.join(id_path, file_name), item['id'])
print("=" * 20, "export bin files finished", "=" * 20)
if __name__ == '__main__':
get_bin()

View File

@ -0,0 +1,120 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 2 || $# -gt 3 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
NEED_PREPROCESS means weather need preprocess or not, it's value is 'y' or 'n'.
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
if [ "$2" == "y" ] || [ "$2" == "n" ];then
need_preprocess=$2
else
echo "weather need preprocess or not, it's value must be in [y, n]"
exit 1
fi
device_id=0
if [ $# == 3 ]; then
device_id=$3
fi
echo "mindir name: "$model
echo "need preprocess: "$need_preprocess
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function preprocess_data()
{
if [ -d preprocess_Result ]; then
rm -rf ./preprocess_Result
fi
mkdir preprocess_Result
python3.7 ../preprocess.py
}
function compile_app()
{
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --input0_path=./preprocess_Result/00_data --device_id=$device_id &> infer.log
}
function cal_acc()
{
python3.7 ../postprocess.py &> acc.log
}
if [ $need_preprocess == "y" ]; then
preprocess_data
if [ $? -ne 0 ]; then
echo "preprocess dataset failed"
exit 1
fi
fi
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi