Add st for dynamic shape
This commit is contained in:
parent
d7ea4742f3
commit
4654197274
|
@ -0,0 +1,74 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter, context
|
||||
from mindspore.nn import TrainOneStepCell
|
||||
from mindspore.nn.optim import FTRL, LazyAdam
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(enable_sparse=True,
|
||||
mode=context.GRAPH_MODE,
|
||||
device_target="Ascend")
|
||||
|
||||
class NetWithSparseGatherV2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetWithSparseGatherV2, self).__init__()
|
||||
self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
|
||||
self.weight2 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight2")
|
||||
self.axis = 0
|
||||
self.gather = P.SparseGatherV2()
|
||||
|
||||
def construct(self, indices, label):
|
||||
return self.gather(self.weight1, indices, self.axis) + self.weight2
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ftrl_net():
|
||||
indices = Tensor(np.array([0, 0, 1]).astype(np.int32))
|
||||
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
|
||||
net = NetWithSparseGatherV2()
|
||||
|
||||
optimizer = FTRL(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
|
||||
optimizer.target = 'Ascend'
|
||||
train_network = TrainOneStepCell(net, optimizer)
|
||||
output = train_network(indices, label)
|
||||
np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]]))
|
||||
np.allclose(net.weight1.asnumpy(), np.array([[[0.7884067, 0.7884067]],
|
||||
[[0.68213105, 0.68213105]],
|
||||
[[1.0, 1.0]]]))
|
||||
np.allclose(net.weight2.asnumpy(), np.array([[[0.6821311, 0.6821311]],
|
||||
[[0.6821311, 0.6821311]],
|
||||
[[0.6821311, 0.6821311]]]))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_lazy_adam_net():
|
||||
indices = Tensor(np.array([0, 0, 1]).astype(np.int32))
|
||||
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
|
||||
net = NetWithSparseGatherV2()
|
||||
|
||||
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
|
||||
optimizer.target = 'Ascend'
|
||||
train_network = TrainOneStepCell(net, optimizer)
|
||||
output = train_network(indices, label)
|
||||
np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]]))
|
||||
np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]]))
|
||||
np.allclose(net.weight2.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[0.9, 0.9]]]))
|
Loading…
Reference in New Issue