!8876 add feature/explainer/ClassSensitivity, Occlusion, Robustness

From: @yuhanshi
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-11-23 17:03:25 +08:00 committed by Gitee
commit 452cb0dd4e
22 changed files with 911 additions and 354 deletions

View File

@ -13,19 +13,6 @@
# limitations under the License.
# ============================================================================
"""Packaged operations based on MindSpore."""
from typing import List, Tuple, Union, Callable
import numpy as np
import mindspore
import mindspore.ops.operations as op
from mindspore import nn
_Axis = Union[int, Tuple[int, ...], List[int]]
_Idx = Union[int, mindspore.Tensor, Tuple[int, ...], Tuple[mindspore.Tensor, ...]]
_Number = Union[int, float, np.int, np.float]
_Shape = Union[int, Tuple[int, ...]]
Tensor = mindspore.Tensor
__all__ = [
'absolute',
@ -41,6 +28,7 @@ __all__ = [
'mean',
'mul',
'sort',
'sqrt',
'squeeze',
'tile',
'reshape',
@ -51,6 +39,20 @@ __all__ = [
'summation'
]
from typing import List, Tuple, Union, Callable
import numpy as np
import mindspore
from mindspore import nn
import mindspore.ops.operations as op
_Axis = Union[int, Tuple[int, ...], List[int]]
_Idx = Union[int, mindspore.Tensor, Tuple[int, ...], Tuple[mindspore.Tensor, ...]]
_Number = Union[int, float, np.int, np.float]
_Shape = Union[int, Tuple[int, ...]]
Tensor = mindspore.Tensor
def absolute(inputs: Tensor) -> Tensor:
"""Get the absolute value of a tensor value."""

View File

@ -33,11 +33,10 @@ from mindspore.train._utils import check_value_type
from mindspore.train.summary._summary_adapter import _convert_image_format
from mindspore.train.summary.summary_record import SummaryRecord
from mindspore.train.summary_pb2 import Explain
from .benchmark import Localization
from .benchmark._attribution.metric import AttributionMetric
from .explanation import RISE
from .explanation._attribution._attribution import Attribution
from .benchmark._attribution.metric import AttributionMetric, LabelSensitiveMetric, LabelAgnosticMetric
from .explanation._attribution.attribution import Attribution
# datafile directory names
_DATAFILE_DIRNAME_PREFIX = "_explain_"
@ -293,6 +292,7 @@ class ExplainRunner:
benchmark.benchmark_method = bench.__class__.__name__
benchmark.total_score = bench.performance
if isinstance(bench, LabelSensitiveMetric):
benchmark.label_score.extend(bench.class_performances)
print(spacer.format("Finish running and writing explanation and benchmark data for {}. "
@ -603,7 +603,6 @@ class ExplainRunner:
Args:
next_element (Tuple): Data of one step
explainer (`_Attribution`): An Attribution object to generate saliency maps.
imageid_labels (dict): A dict that maps the image_id and its union labels.
"""
inputs, labels, _ = self._unpack_next_element(next_element)
for idx, inp in enumerate(inputs):
@ -615,10 +614,22 @@ class ExplainRunner:
if label in labels[idx]:
res = benchmarker.evaluate(explainer, inp, targets=label, mask=bboxes[idx][label],
saliency=saliency)
if np.any(res == np.nan):
res = np.zeros_like(res)
benchmarker.aggregate(res, label)
else:
elif isinstance(benchmarker, LabelSensitiveMetric):
res = benchmarker.evaluate(explainer, inp, targets=label, saliency=saliency)
if np.any(res == np.nan):
res = np.zeros_like(res)
benchmarker.aggregate(res, label)
elif isinstance(benchmarker, LabelAgnosticMetric):
res = benchmarker.evaluate(explainer, inp)
if np.any(res == np.nan):
res = np.zeros_like(res)
benchmarker.aggregate(res)
else:
raise TypeError('Benchmarker must be one of LabelSensitiveMetric or LabelAgnosticMetric, but'
'receive {}'.format(type(benchmarker)))
def _save_original_image(self, sample_id: int, image):
"""Save an image to summary directory."""

View File

@ -16,6 +16,7 @@
__all__ = [
'ForwardProbe',
'abs_max',
'calc_auc',
'calc_correlation',
'format_tensor_to_ndarray',
@ -29,7 +30,6 @@ __all__ = [
]
from typing import Tuple, Union
import math
import numpy as np
from PIL import Image
@ -43,6 +43,21 @@ _Module = nn.Cell
_Tensor = ms.Tensor
def abs_max(gradients):
"""
Transform gradients to saliency through abs then take max along channels.
Args:
gradients (_Tensor): Gradients which will be transformed to saliency map.
Returns:
_Tensor, saliency map integrated from gradients.
"""
gradients = op.Abs()(gradients)
saliency = op.ReduceMax(keep_dims=True)(gradients, axis=1)
return saliency
def generate_one_hot(indices, depth):
r"""
Simple wrap of OneHot operation, the on_value an off_value are fixed to 1.0
@ -96,7 +111,7 @@ def retrieve_layer_by_name(model: _Module, layer_name: str):
- target_layer (_Module)
Raise:
ValueError: is module with given layer_name is not found in the model,
ValueError: if module with given layer_name is not found in the model,
raise ValueError.
"""
@ -201,23 +216,28 @@ def format_tensor_to_ndarray(x: Union[ms.Tensor, np.ndarray]) -> np.ndarray:
def calc_correlation(x: Union[ms.Tensor, np.ndarray],
y: Union[ms.Tensor, np.ndarray]) -> float:
"""Calculate Pearson correlation coefficient between two arrays. """
"""Calculate Pearson correlation coefficient between two vectors."""
x = format_tensor_to_ndarray(x)
y = format_tensor_to_ndarray(y)
faithfulness = -np.corrcoef(x, y)[0, 1]
if math.isnan(faithfulness):
if len(x.shape) > 1 or len(y.shape) > 1:
raise ValueError('"calc_correlation" only support 1-dim vectors currently, but get shape {} and {}.'
.format(len(x.shape), len(y.shape)))
if np.all(x == 0) or np.all(y == 0):
return np.float(0)
faithfulness = -np.corrcoef(x, y)[0, 1]
return faithfulness
def calc_auc(x: _Array) -> float:
def calc_auc(x: _Array) -> _Array:
"""Calculate the Aera under Curve."""
# take mean for multiple patches if the model is fully convolutional model
if len(x.shape) == 4:
x = np.mean(np.mean(x, axis=2), axis=3)
auc = (x.sum() - x[0] - x[-1]) / len(x)
return float(auc)
return auc
def rank_pixels(inputs: _Array, descending: bool = True) -> _Array:
@ -235,13 +255,17 @@ def rank_pixels(inputs: _Array, descending: bool = True) -> _Array:
rank_pixels(x, descending=False)
>> np.array([[3, 2, 0], [4, 5, 1]])
"""
if len(inputs.shape) != 2:
raise ValueError('Only support 2D array currently')
flatten_saliency = inputs.reshape(-1)
if len(inputs.shape) < 2 or len(inputs.shape) > 3:
raise ValueError('Only support 2D or 3D inputs currently.')
batch_size = inputs.shape[0]
flatten_saliency = inputs.reshape(batch_size, -1)
factor = -1 if descending else 1
sorted_arg = np.argsort(factor * flatten_saliency, axis=0)
sorted_arg = np.argsort(factor * flatten_saliency, axis=1)
flatten_rank = np.zeros_like(sorted_arg)
flatten_rank[sorted_arg] = np.arange(0, sorted_arg.shape[0])
arange = np.arange(flatten_saliency.shape[1])
for i in range(batch_size):
flatten_rank[i][sorted_arg[i]] = arange
rank_map = flatten_rank.reshape(inputs.shape)
return rank_map

View File

@ -14,10 +14,14 @@
# ============================================================================
"""Predefined XAI metrics."""
from ._attribution.class_sensitivity import ClassSensitivity
from ._attribution.faithfulness import Faithfulness
from ._attribution.localization import Localization
from ._attribution.robustness import Robustness
__all__ = [
"ClassSensitivity",
"Faithfulness",
"Localization"
"Localization",
"Robustness"
]

View File

@ -13,11 +13,3 @@
# limitations under the License.
# ============================================================================
"""Predefined XAI metrics"""
from .faithfulness import Faithfulness
from .localization import Localization
__all__ = [
"Faithfulness",
"Localization"
]

View File

@ -0,0 +1,73 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Class Sensitivity."""
import numpy as np
from mindspore import Tensor
from .metric import LabelAgnosticMetric
from ... import _operators as ops
from ...explanation._attribution.attribution import Attribution
from ..._utils import calc_correlation
class ClassSensitivity(LabelAgnosticMetric):
r"""
Class sensitivity metric used to evaluate attribution-based explanations.
Reasonable atrribution-based explainers are expected to generate distinct saliency maps for different labels,
especially for labels of highest confidence and low confidence. Class sensitivity evaluates the explainer through
computing the correlation between saliency maps of highest-confidence and lowest-confidence labels. Explainer with
better class sensitivity will receive lower correlation score. To make the evaluation results intuitive, the
returned score will take negative on correlation and normalize.
"""
def evaluate(self, explainer: Attribution, inputs: Tensor) -> np.ndarray:
"""
Evaluate class sensitivity on a single data sample.
Args:
explainer (Attribution): The explainer to be evaluated, see `mindspore.explainer.explanation`.
inputs (Tensor): A data sample, a 4D tensor of shape :math:`(N, C, H, W)`.
Returns:
numpy.ndarray, 1D array of shape :math:`(N,)`, result of class sensitivity evaluated on `explainer`.
Examples:
>>> import mindspore as ms
>>> from mindspore.explainer.explanation import Gradient
>>> gradient = Gradient()
>>> x = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
>>> class_sensitivity = ClassSensitivity()
>>> res = class_sensitivity.evaluate(gradient, x)
"""
self._check_evaluate_param(explainer, inputs)
outputs = explainer.model(inputs)
max_confidence_label = ops.argmax(outputs)
min_confidence_label = ops.argmin(outputs)
max_confidence_saliency = explainer(inputs, max_confidence_label).asnumpy()
min_confidence_saliency = explainer(inputs, min_confidence_label).asnumpy()
correlations = []
for i in range(inputs.shape[0]):
correlation = calc_correlation(max_confidence_saliency[i].reshape(-1),
min_confidence_saliency[i].reshape(-1))
normalized_correlation = (-correlation + 1) / 2
correlations.append(normalized_correlation)
return np.array(correlations, np.float)

View File

@ -12,21 +12,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Faithfulness"""
import math
from typing import Callable, Optional, Union, Tuple
"""Faithfulness."""
from typing import Callable, Optional, Union
import numpy as np
from scipy.ndimage.filters import gaussian_filter
from mindspore import log
import mindspore as ms
from mindspore.train._utils import check_value_type
import mindspore.nn as nn
import mindspore.ops.operations as op
from .metric import AttributionMetric
from ..._utils import calc_correlation, calc_auc, format_tensor_to_ndarray, rank_pixels
from ...explanation._attribution._attribution import Attribution as _Attribution
from .metric import LabelSensitiveMetric
from ..._utils import calc_auc, format_tensor_to_ndarray
from ...explanation._attribution import Attribution as _Attribution
from ...explanation._attribution._perturbation.replacement import Constant, GaussianBlur
from ...explanation._attribution._perturbation.ablation import AblationWithSaliency
_Array = np.ndarray
_Explainer = Union[_Attribution, Callable]
@ -36,189 +34,19 @@ _Module = nn.Cell
def _calc_feature_importance(saliency: _Array, masks: _Array) -> _Array:
"""Calculate feature important w.r.t given masks."""
feature_importance = []
num_perturbations = masks.shape[0]
for i in range(num_perturbations):
patch_feature_importance = saliency[masks[i]].sum() / masks[i].sum()
feature_importance.append(patch_feature_importance)
feature_importance = np.array(feature_importance, dtype=np.float32)
if saliency.shape[1] < masks.shape[2]:
saliency = np.repeat(saliency, repeats=masks.shape[2], axis=1)
batch_size = masks.shape[0]
num_perturbations = masks.shape[1]
saliency = np.repeat(saliency, repeats=num_perturbations, axis=0)
saliency = saliency.reshape([batch_size, num_perturbations, -1])
masks = masks.reshape([batch_size, num_perturbations, -1])
feature_importance = saliency * masks
feature_importance = feature_importance.sum(-1) / masks.sum(-1)
return feature_importance
class _BaseReplacement:
"""
Base class of generator for generating different replacement for perturbations.
Args:
kwargs: Optional args for generating replacement. Derived class need to
add necessary arg names and default value to '_necessary_args'.
If the argument has no default value, the value should be set to
'EMPTY' to mark the required args. Initializing an object will
check the given kwargs w.r.t '_necessary_args'.
Raise:
ValueError: Raise when provided kwargs not contain necessary arg names with 'EMPTY' mark.
"""
_necessary_args = {}
def __init__(self, **kwargs):
self._replace_args = self._necessary_args.copy()
for key, value in self._replace_args.items():
if key in kwargs.keys():
self._replace_args[key] = kwargs[key]
elif key not in kwargs.keys() and value == 'EMPTY':
raise ValueError(f"Missing keyword arg {key} for {self.__class__.__name__}.")
__call__: Callable
"""
Generate replacement for perturbations. Derived class should overwrite this
function to generate different replacement for perturbing.
Args:
inputs (_Array): Array to be perturb.
Returns:
- replacement (_Array): Array to provide alternative pixels for every
position in the given
inputs. The returned array should have same shape as inputs.
"""
class Constant(_BaseReplacement):
""" Generator to provide constant-value replacement for perturbations """
_necessary_args = {'base_value': 'EMPTY'}
def __call__(self, inputs: _Array) -> _Array:
replacement = np.ones_like(inputs, dtype=np.float32)
replacement *= self._replace_args['base_value']
return replacement
class GaussianBlur(_BaseReplacement):
""" Generator to provided gaussian blurred inputs for perturbation. """
_necessary_args = {'sigma': 0.7}
def __call__(self, inputs: _Array) -> _Array:
sigma = self._replace_args['sigma']
replacement = gaussian_filter(inputs, sigma=sigma)
return replacement
class Perturb:
"""
Perturbation generator to generate perturbations for a given array.
Args:
perturb_percent (float): percentage of pixels to perturb
perturb_mode (str): specify perturbing mode, through deleting or
inserting pixels. Current support: ['Deletion', 'Insertion'].
is_accumulate (bool): whether to accumulate the former perturbations to
the later perturbations.
perturb_pixel_per_step (int, optional): number of pixel to perturb
for each perturbation. If perturb_pixel_per_step is None, actual
perturb_pixel_per_step will be calculate by:
num_image_pixel * perturb_percent / num_perturb_steps.
Default: None
num_perturbations (int, optional): number of perturbations. If
num_perturbations if None, it will be calculated by:
num_image_pixel * perturb_percent / perturb_pixel_per_step.
Default: None
"""
def __init__(self,
perturb_percent: float,
perturb_mode: str,
is_accumulate: bool,
perturb_pixel_per_step: Optional[int] = None,
num_perturbations: Optional[int] = None):
self._perturb_percent = perturb_percent
self._perturb_mode = perturb_mode
self._pixel_per_step = perturb_pixel_per_step
self._num_perturbations = num_perturbations
self._is_accumulate = is_accumulate
@staticmethod
def _assign(x: _Array, y: _Array, masks: _Array):
"""Assign values to perturb pixels on perturbations."""
check_value_type("masks dtype", masks.dtype, type(np.dtype(bool)))
for i in range(x.shape[0]):
x[i][:, masks[i]] = y[:, masks[i]]
def _generate_mask(self, saliency_rank: _Array) -> _Array:
"""Generate mask for perturbations based on given saliency ranks."""
if len(saliency_rank.shape) != 2:
raise ValueError(f'The param "saliency_rank" should be 2-dim, but receive {len(saliency_rank.shape)}.')
num_pixels = saliency_rank.shape[0] * saliency_rank.shape[1]
if self._pixel_per_step:
pixel_per_step = self._pixel_per_step
num_perturbations = math.floor(
num_pixels * self._perturb_percent / self._pixel_per_step)
elif self._num_perturbations:
pixel_per_step = math.floor(
num_pixels * self._perturb_percent / self._num_perturbations)
num_perturbations = self._num_perturbations
else:
raise ValueError("Must provide either pixel_per_step or num_perturbations.")
masks = np.zeros(
(num_perturbations, saliency_rank.shape[0], saliency_rank.shape[1]),
dtype=np.bool)
low_bound = 0
up_bound = low_bound + pixel_per_step
factor = 0 if self._is_accumulate else 1
for i in range(num_perturbations):
masks[i, ((saliency_rank >= low_bound)
& (saliency_rank < up_bound))] = True
low_bound = up_bound * factor
up_bound += pixel_per_step
if len(masks.shape) == 3:
return masks
raise ValueError(f'Invalid masks shape {len(masks.shape)}, expect 3-dim.')
def __call__(self,
inputs: _Array,
saliency: _Array,
reference: _Array,
return_mask: bool = False,
) -> Union[_Array, Tuple[_Array, ...]]:
"""
Generate perturbations of given array.
Args:
inputs (_Array): input array to perturb
saliency (_Array): saliency map
return_mask (bool): whether return the mask for generating
the perturbation. The mask can be used to calculate
average feature importance of pixels perturbed at each step.
Return:
perturbations (_Array)
masks (_Array): return when return_mask is set to True.
"""
if not np.array_equal(inputs.shape, reference.shape):
raise ValueError('reference must have the same shape as inputs.')
saliency_rank = rank_pixels(saliency, descending=True)
masks = self._generate_mask(saliency_rank)
num_perturbations = masks.shape[0]
if self._perturb_mode == 'Insertion':
inputs, reference = reference, inputs
perturbations = np.tile(
inputs, (num_perturbations, *[1] * len(inputs.shape)))
Perturb._assign(perturbations, reference, masks)
if return_mask:
return perturbations, masks
return perturbations
class _FaithfulnessHelper:
"""Base class for faithfulness calculator."""
_support = [Constant, GaussianBlur]
@ -240,27 +68,15 @@ class _FaithfulnessHelper:
raise ValueError(
'The param "perturb_method" should be one of {}.'.format([x.__name__ for x in self._support]))
self._perturb = Perturb(perturb_percent=perturb_percent,
perturb_mode=perturb_mode,
self._ablation = AblationWithSaliency(perturb_mode=perturb_mode,
perturb_percent=perturb_percent,
perturb_pixel_per_step=perturb_pixel_per_step,
num_perturbations=num_perturbations,
is_accumulate=is_accumulate)
calc_faithfulness: Callable
"""
Method used to calculate faithfulness for given inputs, target label,
saliency. Derive class should implement this method.
Args:
inputs (_Array): sample to calculate faithfulness score
model (_Module): model to explanation
targets (_Label): label to explanation on.
saliency (_Array): Saliency map of given inputs and targets from the
explainer.
Return:
- faithfulness (float): faithfulness score
"""
def calc_faithfulness(self, inputs, model, targets, saliency):
"""Calc faithfulness."""
raise NotImplementedError
class NaiveFaithfulness(_FaithfulnessHelper):
@ -304,8 +120,7 @@ class NaiveFaithfulness(_FaithfulnessHelper):
perturb_pixel_per_step: Optional[int] = None,
num_perturbations: Optional[int] = None,
**kwargs):
super(NaiveFaithfulness, self).__init__(
perturb_percent=perturb_percent,
super().__init__(perturb_percent=perturb_percent,
perturb_mode='Deletion',
perturb_method=perturb_method,
is_accumulate=is_accumulate,
@ -336,16 +151,21 @@ class NaiveFaithfulness(_FaithfulnessHelper):
log.warning("The saliency map is zero everywhere. The correlation will be set to zero.")
correlation = 0
return np.array([correlation], np.float)
batch_size = inputs.shape[0]
reference = self._get_reference(inputs)
perturbations, masks = self._perturb(
inputs, saliency, reference, return_mask=True)
masks = self._ablation.generate_mask(saliency, inputs.shape[1])
perturbations = self._ablation(inputs, reference, masks)
feature_importance = _calc_feature_importance(saliency, masks)
perturbations = perturbations.reshape(-1, *perturbations.shape[2:])
perturbations = ms.Tensor(perturbations, dtype=ms.float32)
predictions = model(perturbations).asnumpy()[:, targets]
predictions = model(perturbations)[:, targets].asnumpy()
predictions = predictions.reshape(*feature_importance.shape)
faithfulness = calc_correlation(feature_importance, predictions)
return np.array([faithfulness], np.float)
faithfulness = -np.corrcoef(feature_importance, predictions)
faithfulness = np.diag(faithfulness[:batch_size, batch_size:])
return faithfulness
class DeletionAUC(_FaithfulnessHelper):
@ -385,8 +205,7 @@ class DeletionAUC(_FaithfulnessHelper):
perturb_pixel_per_step: Optional[int] = None,
num_perturbations: Optional[int] = None,
**kwargs):
super(DeletionAUC, self).__init__(
perturb_percent=perturb_percent,
super().__init__(perturb_percent=perturb_percent,
perturb_mode='Deletion',
perturb_method=perturb_method,
perturb_pixel_per_step=perturb_pixel_per_step,
@ -398,7 +217,7 @@ class DeletionAUC(_FaithfulnessHelper):
inputs: _Array,
model: _Module,
targets: _Label,
saliency: _Array) -> np.ndarray:
saliency: _Array) -> _Array:
"""
Calculate faithfulness through deletion AUC.
@ -414,14 +233,17 @@ class DeletionAUC(_FaithfulnessHelper):
"""
reference = self._get_reference(inputs)
perturbations = self._perturb(inputs, saliency, reference)
masks = self._ablation.generate_mask(saliency, inputs.shape[1])
perturbations = self._ablation(inputs, reference, masks)
perturbations = perturbations.reshape(-1, *perturbations.shape[2:])
perturbations = ms.Tensor(perturbations, dtype=ms.float32)
predictions = model(perturbations).asnumpy()[:, targets]
input_tensor = op.ExpandDims()(ms.Tensor(inputs, ms.float32), 0)
predictions = predictions.reshape((inputs.shape[0], -1))
input_tensor = ms.Tensor(inputs, ms.float32)
original_output = model(input_tensor).asnumpy()[:, targets]
auc = calc_auc(original_output - predictions)
return np.array([1 - auc])
auc = calc_auc(original_output.squeeze() - predictions.squeeze())
return np.array([1 - auc], np.float)
class InsertionAUC(_FaithfulnessHelper):
@ -462,8 +284,7 @@ class InsertionAUC(_FaithfulnessHelper):
perturb_pixel_per_step: Optional[int] = None,
num_perturbations: Optional[int] = None,
**kwargs):
super(InsertionAUC, self).__init__(
perturb_percent=perturb_percent,
super().__init__(perturb_percent=perturb_percent,
perturb_mode='Insertion',
perturb_method=perturb_method,
perturb_pixel_per_step=perturb_pixel_per_step,
@ -475,7 +296,7 @@ class InsertionAUC(_FaithfulnessHelper):
inputs: _Array,
model: _Module,
targets: _Label,
saliency: _Array) -> np.ndarray:
saliency: _Array) -> _Array:
"""
Calculate faithfulness through insertion AUC.
@ -491,17 +312,21 @@ class InsertionAUC(_FaithfulnessHelper):
"""
reference = self._get_reference(inputs)
perturbations = self._perturb(inputs, saliency, reference)
masks = self._ablation.generate_mask(saliency, inputs.shape[1])
perturbations = self._ablation(inputs, reference, masks)
perturbations = perturbations.reshape(-1, *perturbations.shape[2:])
perturbations = ms.Tensor(perturbations, dtype=ms.float32)
predictions = model(perturbations).asnumpy()[:, targets]
base_tensor = op.ExpandDims()(ms.Tensor(reference, ms.float32), 0)
predictions = predictions.reshape((inputs.shape[0], -1))
base_tensor = ms.Tensor(reference, ms.float32)
base_outputs = model(base_tensor).asnumpy()[:, targets]
auc = calc_auc(predictions - base_outputs)
return np.array([auc])
auc = calc_auc(predictions.squeeze() - base_outputs.squeeze())
return np.array([auc], np.float)
class Faithfulness(AttributionMetric):
class Faithfulness(LabelSensitiveMetric):
"""
Provides evaluation on faithfulness on XAI explanations.
@ -604,10 +429,6 @@ class Faithfulness(AttributionMetric):
inputs = format_tensor_to_ndarray(inputs)
saliency = format_tensor_to_ndarray(saliency)
inputs = inputs.squeeze(axis=0)
saliency = saliency.squeeze()
if len(saliency.shape) != 2:
raise ValueError('Squeezed saliency map is expected to 2D, but receive {}.'.format(len(saliency.shape)))
model = nn.SequentialCell([explainer.model, self._activation_fn])
faithfulness = self._faithfulness_helper.calc_faithfulness(inputs=inputs, model=model,
targets=targets, saliency=saliency)

View File

@ -16,7 +16,7 @@
import numpy as np
from mindspore.train._utils import check_value_type
from .metric import AttributionMetric
from .metric import LabelSensitiveMetric
from ..._operators import maximum, reshape, Tensor
from ..._utils import format_tensor_to_ndarray
@ -37,7 +37,7 @@ def _mask_out_saliency(saliency, threshold):
return mask_out
class Localization(AttributionMetric):
class Localization(LabelSensitiveMetric):
r"""
Provides evaluation on the localization capability of XAI methods.

View File

@ -13,12 +13,20 @@
# limitations under the License.
# ============================================================================
"""Base class for XAI metrics."""
import copy
from typing import Callable
import numpy as np
import mindspore as ms
from mindspore import log as logger
from mindspore.train._utils import check_value_type
from ..._operators import Tensor
from ..._utils import format_tensor_to_ndarray
from ...explanation._attribution._attribution import Attribution
from ...explanation._attribution.attribution import Attribution
_Explainer = Attribution
def verify_argument(inputs, arg_name):
@ -46,8 +54,77 @@ def verify_targets(targets, num_labels):
class AttributionMetric:
"""Super class of XAI metric class used in classification scenarios."""
def __init__(self, num_labels=None):
self._verify_params(num_labels)
def __init__(self):
self._explainer = None
evaluate: Callable
"""
This method evaluates the explainer on the given attribution and returns the evaluation results.
Derived class should implement this method according to specific algorithms of the metric.
"""
def _record_explainer(self, explainer: _Explainer):
"""Record the explainer in current evaluation."""
if self._explainer is None:
self._explainer = explainer
elif self._explainer is not explainer:
logger.info('Provided explainer is not the same as previously evaluted one. Please reset the evaluated '
'results. Previous explainer: %s, current explainer: %s', self._explainer, explainer)
self._explainer = explainer
class LabelAgnosticMetric(AttributionMetric):
"""Super class add functions for label-agnostic metric."""
def __init__(self):
super().__init__()
self._global_results = []
@property
def performance(self) -> float:
"""
Return the average evaluation result.
Return:
float, averaged result. If no result is aggregate in the global_results, 0.0 will be returned.
"""
if not self._global_results:
return 0.0
results_sum = sum(self._global_results)
count = len(self._global_results)
return results_sum / count
def aggregate(self, result):
"""Aggregate single evaluation result to global results."""
if isinstance(result, float):
self._global_results.append(result)
elif isinstance(result, (ms.Tensor, np.ndarray)):
result = format_tensor_to_ndarray(result)
self._global_results.append(float(result))
else:
raise TypeError('result should have type of float, ms.Tensor or np.ndarray, but receive %s' % type(result))
def get_results(self):
"""Return the gloabl results."""
return self._global_results.copy()
def reset(self):
"""Reset global results."""
self._global_results.clear()
def _check_evaluate_param(self, explainer, inputs):
"""Check the evaluate parameters."""
check_value_type('explainer', explainer, Attribution)
self._record_explainer(explainer)
verify_argument(inputs, 'inputs')
class LabelSensitiveMetric(AttributionMetric):
"""Super class add functions for label-sensitive metrics."""
def __init__(self, num_labels: int):
super().__init__()
LabelSensitiveMetric._verify_params(num_labels)
self._num_labels = num_labels
self._global_results = {i: [] for i in range(num_labels)}
@ -57,10 +134,6 @@ class AttributionMetric:
if num_labels < 1:
raise ValueError("Argument num_labels must be parsed with a integer > 0.")
def evaluate(self, explainer, inputs, targets, saliency=None):
"""This function evaluates on a single sample and return the result."""
raise NotImplementedError
def aggregate(self, result, targets):
"""Aggregates single result to global_results."""
if isinstance(result, float):
@ -120,11 +193,12 @@ class AttributionMetric:
def get_results(self):
"""Global result of the metric can be return"""
return self._global_results
return copy.deepcopy(self._global_results)
def _check_evaluate_param(self, explainer, inputs, targets, saliency):
"""Check the evaluate parameters."""
check_value_type('explainer', explainer, Attribution)
self._record_explainer(explainer)
verify_argument(inputs, 'inputs')
output = explainer.model(inputs)
check_value_type("output of explainer model", output, Tensor)

View File

@ -0,0 +1,134 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Robustness."""
from typing import Optional, Union
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import log
from .metric import LabelSensitiveMetric
from ...explanation._attribution import Attribution
from ...explanation._attribution._perturbation.replacement import RandomPerturb
_Array = np.ndarray
_Label = Union[ms.Tensor, int]
class Robustness(LabelSensitiveMetric):
"""
Robustness perturbs the inputs by adding random noise and choose the maximum sensitivity as evaluation score from
the perturbations.
Args:
num_labels (int): Number of classes in the dataset.
Examples:
>>> from mindspore.explainer.benchmark import Robustness
>>> num_labels = 100
>>> robustness = Robustness(num_labels)
"""
def __init__(self, num_labels: int, activation_fn=nn.Softmax()):
super().__init__(num_labels)
self._perturb = RandomPerturb()
self._num_perturbations = 100 # number of perturbations used in evaluation
self._threshold = 0.1 # threshold to generate perturbation
self._activation_fn = activation_fn
def evaluate(self,
explainer: Attribution,
inputs: Tensor,
targets: _Label,
saliency: Optional[Tensor] = None
) -> _Array:
"""
Evaluate robustness on single sample.
Note:
Currently only single sample (:math:`N=1`) at each call is supported.
Args:
explainer (Explanation): The explainer to be evaluated, see `mindspore.explainer.explanation`.
inputs (Tensor): A data sample, a 4D tensor of shape :math:`(N, C, H, W)`.
targets (Tensor, int): The label of interest. It should be a 1D or 0D tensor, or an integer.
If `targets` is a 1D tensor, its length should be the same as `inputs`.
saliency (Tensor, optional): The saliency map to be evaluated, a 4D tensor of shape :math:`(N, 1, H, W)`.
If it is None, the parsed `explainer` will generate the saliency map with `inputs` and `targets` and
continue the evaluation. Default: None.
Returns:
numpy.ndarray, 1D array of shape :math:`(N,)`, result of localization evaluated on `explainer`.
Raises:
ValueError: If batch_size is larger than 1.
Examples:
>>> # init an explainer, the network should contain the output activation function.
>>> from mindspore.explainer.explanation import Gradient
>>> from mindspore.explainer.benchmark import Robustness
>>> gradient = Gradient(network)
>>> input_x = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
>>> target_label = 5
>>> robustness = Robustness(num_labels=10)
>>> res = robustness.evaluate(gradient, input_x, target_label)
"""
self._check_evaluate_param(explainer, inputs, targets, saliency)
if inputs.shape[0] > 1:
raise ValueError('Robustness only support a sample each time, but receive {}'.format(inputs.shape[0]))
inputs_np = inputs.asnumpy()
if isinstance(targets, int):
targets = ms.Tensor(targets, ms.int32)
if saliency is None:
saliency = explainer(inputs, targets)
saliency_np = saliency.asnumpy()
norm = np.sqrt(np.sum(np.square(saliency_np), axis=tuple(range(1, len(saliency_np.shape)))))
if norm == 0:
log.warning('Get saliency norm equals 0, robustness return NaN for zero-norm saliency currently.')
return np.array([np.nan])
perturbations = []
for sample in inputs_np:
sample = np.expand_dims(sample, axis=0)
perturbations_per_input = []
for _ in range(self._num_perturbations):
perturbation = self._perturb(sample)
perturbations_per_input.append(perturbation)
perturbations_per_input = np.vstack(perturbations_per_input)
perturbations.append(perturbations_per_input)
perturbations = np.stack(perturbations, axis=0)
perturbations = np.reshape(perturbations, (-1,) + inputs_np.shape[1:])
perturbations = ms.Tensor(perturbations, ms.float32)
repeated_targets = np.repeat(targets.asnumpy(), repeats=self._num_perturbations, axis=0)
repeated_targets = ms.Tensor(repeated_targets, ms.int32)
saliency_of_perturbations = explainer(perturbations, repeated_targets)
perturbations_saliency = saliency_of_perturbations.asnumpy()
repeated_saliency = np.repeat(saliency_np, repeats=self._num_perturbations, axis=0)
sensitivities = np.sum((repeated_saliency - perturbations_saliency) ** 2,
axis=tuple(range(1, len(repeated_saliency.shape))))
max_sensitivity = np.max(sensitivities.reshape((norm.shape[0], -1)), axis=1) / norm
robustness_res = 1 / np.exp(max_sensitivity)
return robustness_res

View File

@ -14,9 +14,10 @@
# ============================================================================
"""Predefined Attribution explainers."""
from ._attribution._backprop.gradcam import GradCAM
from ._attribution._backprop.gradient import Gradient
from ._attribution._backprop.gradcam import GradCAM
from ._attribution._backprop.modified_relu import Deconvolution, GuidedBackprop
from ._attribution._perturbation.occlusion import Occlusion
from ._attribution._perturbation.rise import RISE
__all__ = [
@ -24,5 +25,6 @@ __all__ = [
'Deconvolution',
'GuidedBackprop',
'GradCAM',
'RISE'
'Occlusion',
'RISE',
]

View File

@ -13,15 +13,9 @@
# limitations under the License.
# ============================================================================
"""Predefined Attribution explainers."""
from ._backprop.gradcam import GradCAM
from ._backprop.gradient import Gradient
from ._backprop.modified_relu import Deconvolution, GuidedBackprop
from ._perturbation.rise import RISE
from .attribution import Attribution
__all__ = [
'Gradient',
'Deconvolution',
'GuidedBackprop',
'GradCAM',
'RISE'
'Attribution'
]

View File

@ -13,12 +13,3 @@
# limitations under the License.
# ============================================================================
"""Backprop-base _attribution explainer."""
from .gradient import Gradient
from .gradcam import GradCAM
from .modified_relu import Deconvolution, GuidedBackprop
__all__ = ['Gradient',
'GradCAM',
'Deconvolution',
'GuidedBackprop']

View File

@ -22,7 +22,6 @@ from .intermediate_layer import IntermediateLayerAttribution
from ...._utils import ForwardProbe, retrieve_layer, unify_inputs, unify_targets
def _gradcam_aggregation(attributions):
"""
Aggregate the gradient and activation to get the final _attribution.
@ -76,10 +75,7 @@ class GradCAM(IntermediateLayerAttribution):
>>> gradcam = GradCAM(net, layer=layer_name)
"""
def __init__(
self,
network,
layer=""):
def __init__(self, network, layer=""):
super(GradCAM, self).__init__(network, layer)
self._saliency_cell = retrieve_layer(self._backward_model, target_layer=layer)

View File

@ -16,12 +16,11 @@
from copy import deepcopy
from mindspore import nn
from mindspore.ops import operations as op
from mindspore.train._utils import check_value_type
from ...._operators import reshape, sqrt, Tensor
from .._attribution import Attribution
from ..attribution import Attribution
from .backprop_utils import compute_gradients
from ...._utils import unify_inputs, unify_targets
from ...._utils import abs_max, unify_inputs, unify_targets
def _get_hook(bntype, cache):
@ -41,16 +40,6 @@ def _get_hook(bntype, cache):
return reset_gradient
def _abs_max(gradients):
"""
Transform gradients to saliency through abs then take max along
channels.
"""
gradients = op.Abs()(gradients)
saliency = op.ReduceMax(keep_dims=True)(gradients, axis=1)
return saliency
class Gradient(Attribution):
r"""
Provides Gradient explanation method.
@ -85,8 +74,7 @@ class Gradient(Attribution):
self._backward_model.set_grad(False)
self._hook_bn()
self._grad_op = compute_gradients
self._aggregation_fn = _abs_max
self._aggregation_fn = abs_max
def __call__(self, inputs, targets):
"""

View File

@ -13,7 +13,3 @@
# limitations under the License.
# ============================================================================
""" Perturbation-based _attribution explainer. """
from .rise import RISE
__all__ = ['RISE']

View File

@ -0,0 +1,182 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Modules to ablate images."""
__all__ = [
'Ablation',
'AblationWithSaliency',
]
import math
from functools import reduce
from typing import Optional, Union
import numpy as np
from .replacement import Constant
from ...._utils import rank_pixels
class Ablation:
"""Base class to ablate image based on given replacement."""
def __init__(self, perturb_mode: str):
self._perturb_mode = perturb_mode
def __call__(self,
inputs: np.array,
reference: Union[np.array, float],
masks: np.array
) -> np.array:
"""
Generate perturbations of given array.
Args:
inputs (np.ndarray): Input array to perturb. The first dim of inputs is assumed to be the batch size, i.e.,
number of samples.
reference (np.ndarray or float): Array of values to replace the elements in the original inputs. The shape
of reference must math the inputs. If scalar is provided, the perturbed elements will be assigned the
given value..
masks (np.ndarray): Several boolean array to mark the perturbed positions. True marks the pixels to be
perturbed, otherwise the pixels will be kept. The shape of masks is assumed to be
[batch_size, num_perturbations, inputs_shape[1:]].
Return:
perturbations (np.ndarray)
"""
if isinstance(reference, float):
reference = Constant(base_value=reference)(inputs)
if not np.array_equal(inputs.shape, reference.shape):
raise ValueError('reference must have the same shape as inputs.')
num_perturbations = masks.shape[1]
if self._perturb_mode == 'Insertion':
inputs, reference = reference, inputs
perturbations = np.repeat(inputs[:, None, :], num_perturbations, 1)
reference = np.repeat(reference[:, None, :], num_perturbations, 1)
Ablation._assign(perturbations, reference, masks)
return perturbations
@staticmethod
def _assign(original_array: np.ndarray, replacement: np.ndarray, masks: np.ndarray):
"""Assign values to perturb pixels on perturbations."""
if masks.dtype != bool:
raise TypeError('The param "masks" should be an array of bool, but receive {}'.format(masks.dtype))
if not np.array_equal(original_array.shape, masks.shape):
raise ValueError('masks must have the shape {} same as [batch_size, num_perturbations, inputs.shape[1:],'
'but receive {}.'.format(original_array.shape, masks.shape))
original_array[masks] = replacement[masks]
class AblationWithSaliency(Ablation):
"""
Perturbation generator to generate perturbations for a given array.
Args:
perturb_percent (float): percentage of pixels to perturb
perturb_mode (str): specify perturbing mode, through deleting or
inserting pixels. Current support: ['Deletion', 'Insertion'].
is_accumulate (bool): whether to accumulate the former perturbations to
the later perturbations.
perturb_pixel_per_step (int, optional): number of pixel to perturb
for each perturbation. If perturb_pixel_per_step is None, actual
perturb_pixel_per_step will be calculate by:
num_image_pixel * perturb_percent / num_perturb_steps.
Default: None
num_perturbations (int, optional): number of perturbations. If
num_perturbations if None, it will be calculated by:
num_image_pixel * perturb_percent / perturb_pixel_per_step.
Default: None
"""
def __init__(self,
perturb_mode: str,
perturb_percent: float = 1.0,
is_accumulate: bool = False,
perturb_pixel_per_step: Optional[int] = None,
num_perturbations: Optional[int] = None):
super().__init__(perturb_mode)
self._perturb_percent = perturb_percent
self._perturb_mode = perturb_mode
self._pixel_per_step = perturb_pixel_per_step
self._num_perturbations = num_perturbations
self._is_accumulate = is_accumulate
def generate_mask(self,
saliency: np.ndarray,
num_channels: Optional[int] = None
) -> np.ndarray:
"""
Generate mask for perturbations based on given saliency ranks.
Args:
saliency (np.ndarray): Perturbing masks will be generated based on the given saliency map. The shape of
saliency is expected to be: [batch_size, optional(num_channels), *spatial_size]. If multi-channel
saliency is provided, an averaged saliency will be taken to calculate pixel order in spatial dimension.
num_channels (optional[int]): Number of channels of the input data. In order to match the shape of inputs,
num_channels should be provided when input data have channels dimension, even if num_channel. If None is
provided, the inputs is assumed to be no-channel data, and the generated mask will have no channel
dimension. Default: None.
Return:
mask (np.ndarray): boolen mask for generate perturbations.
"""
batch_size = saliency.shape[0]
expected_num_dim = len(saliency.shape) + 1
has_channel = num_channels is not None
num_channels = 1 if num_channels is None else num_channels
if has_channel:
saliency = saliency.mean(axis=1)
saliency_rank = rank_pixels(saliency, descending=True)
num_pixels = reduce(lambda x, y: x * y, saliency.shape[1:])
if self._pixel_per_step:
pixel_per_step = self._pixel_per_step
num_perturbations = math.floor(num_pixels * self._perturb_percent / self._pixel_per_step)
elif self._num_perturbations:
pixel_per_step = math.floor(num_pixels * self._perturb_percent / self._num_perturbations)
num_perturbations = self._num_perturbations
else:
raise ValueError("Must provide either pixel_per_step or num_perturbations.")
masks = np.zeros((batch_size, num_perturbations, num_channels, saliency_rank.shape[1], saliency_rank.shape[2]),
dtype=np.bool)
factor = 0 if self._is_accumulate else 1
for i in range(batch_size):
low_bound = 0
up_bound = low_bound + pixel_per_step
for j in range(num_perturbations):
masks[i, j, :, ((saliency_rank[i] >= low_bound) & (saliency_rank[i] < up_bound))] = True
low_bound = up_bound + factor
up_bound += pixel_per_step
masks = masks if has_channel else np.squeeze(masks, axis=2)
if len(masks.shape) == expected_num_dim:
return masks
raise ValueError(f'Invalid masks shape {len(masks.shape)}, expect {expected_num_dim}-dim.')

View File

@ -0,0 +1,166 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Occlusion explainer."""
import math
from typing import Tuple, Union
import numpy as np
from numpy.lib.stride_tricks import as_strided
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn import Cell
from .ablation import Ablation
from .perturbation import PerturbationAttribution
from .replacement import Constant
from ...._utils import abs_max
_Array = np.ndarray
_Label = Union[int, Tensor]
def _generate_patches(array, window_size, stride):
"""View as windows."""
if not isinstance(array, np.ndarray):
raise TypeError("`array` must be a numpy ndarray")
arr_shape = np.array(array.shape)
window_size = np.array(window_size, dtype=arr_shape.dtype)
slices = tuple(slice(None, None, st) for st in stride)
window_strides = np.array(array.strides)
indexing_strides = array[slices].strides
win_indices_shape = (((np.array(array.shape) - np.array(window_size)) // np.array(stride)) + 1)
new_shape = tuple(list(win_indices_shape) + list(window_size))
strides = tuple(list(indexing_strides) + list(window_strides))
patches = as_strided(array, shape=new_shape, strides=strides)
return patches
class Occlusion(PerturbationAttribution):
r"""
Occlusion uses a sliding window to replace the pixels with a reference value (e.g. constant value), and computes
the output difference w.r.t the original output. The output difference caused by perturbed pixels are assigned as
feature importance to those pixels. For pixels involved in multiple sliding windows, the feature importance is the
averaged differences from multiple sliding windows.
For more details, please refer to the original paper via: `<https://arxiv.org/abs/1311.2901>`_.
Args:
network (Cell): Specify the black-box model to be explained.
Inputs:
inputs (Tensor): The input data to be explained, a 4D tensor of shape :math:`(N, C, H, W)`.
targets (Tensor, int): The label of interest. It should be a 1D or 0D tensor, or an integer.
If it is a 1D tensor, its length should be the same as `inputs`.
Outputs:
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
Example:
>>> from mindspore.explainer.explanation import Occlusion
>>> net = resnet50(10)
>>> param_dict = load_checkpoint("resnet50.ckpt")
>>> load_param_into_net(net, param_dict)
>>> occlusion = Occlusion(net)
>>> x = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
>>> label = 1
>>> saliency = occlusion(x, label)
"""
def __init__(self, network: Cell, activation_fn: Cell = nn.Softmax()):
super().__init__(network, activation_fn)
self._ablation = Ablation(perturb_mode='Deletion')
self._aggregation_fn = abs_max
self._get_replacement = Constant(base_value=0.0)
self._num_sample_per_dim = 32 # specify the number of perturbations each dimension.
self._num_per_eval = 32 # number of perturbations each evaluation step.
def __call__(self, inputs: Tensor, targets: _Label) -> Tensor:
"""Call function for 'Occlusion'."""
self._verify_data(inputs, targets)
inputs = inputs.asnumpy()
targets = targets.asnumpy() if isinstance(targets, Tensor) else np.array([targets] * inputs.shape[0], np.int)
# If spatial size of input data is smaller than self._num_sample_per_dim, window_size and strides will set to
# `(C, 3, 3)` and `(C, 1, 1)` separately.
window_size = tuple(
[inputs.shape[1]]
+ [x % self._num_sample_per_dim if x > self._num_sample_per_dim else 3 for x in inputs.shape[2:]])
strides = tuple(
[inputs.shape[1]]
+ [x // self._num_sample_per_dim if x > self._num_sample_per_dim else 1 for x in inputs.shape[2:]])
model = nn.SequentialCell([self._model, self._activation_fn])
original_outputs = model(Tensor(inputs, ms.float32)).asnumpy()[np.arange(len(targets)), targets]
total_attribution = np.zeros_like(inputs)
weights = np.ones_like(inputs)
masks = Occlusion._generate_masks(inputs, window_size, strides)
num_perturbations = masks.shape[1]
original_outputs_repeat = np.repeat(original_outputs, repeats=num_perturbations, axis=0)
reference = self._get_replacement(inputs)
occluded_inputs = self._ablation(inputs, reference, masks)
targets_repeat = np.repeat(targets, repeats=num_perturbations, axis=0)
occluded_inputs = occluded_inputs.reshape((-1, *inputs.shape[1:]))
if occluded_inputs.shape[0] > self._num_per_eval:
cal_time = math.ceil(occluded_inputs.shape[0] / self._num_per_eval)
occluded_outputs = []
for i in range(cal_time):
occluded_input = occluded_inputs[i*self._num_per_eval
:min((i+1) * self._num_per_eval, occluded_inputs.shape[0])]
target = targets_repeat[i*self._num_per_eval
:min((i+1) * self._num_per_eval, occluded_inputs.shape[0])]
occluded_output = model(Tensor(occluded_input)).asnumpy()[np.arange(target.shape[0]), target]
occluded_outputs.append(occluded_output)
occluded_outputs = np.concatenate(occluded_outputs)
else:
occluded_outputs = model(Tensor(occluded_inputs)).asnumpy()[np.arange(len(targets_repeat)), targets_repeat]
outputs_diff = original_outputs_repeat - occluded_outputs
outputs_diff = outputs_diff.reshape(inputs.shape[0], -1)
total_attribution += (
outputs_diff.reshape(outputs_diff.shape + (1,) * (len(masks.shape) - 2)) * masks).sum(axis=1).clip(1e-6)
weights += masks.sum(axis=1)
attribution = self._aggregation_fn(ms.Tensor(total_attribution / weights))
return attribution
@staticmethod
def _generate_masks(inputs: Tensor, window_size: Tuple[int, ...], strides: Tuple[int, ...]) -> _Array:
"""Generate masks to perturb contiguous regions."""
total_dim = np.prod(inputs.shape[1:]).item()
template = np.arange(total_dim).reshape(inputs.shape[1:])
indices = _generate_patches(template, window_size, strides)
num_perturbations = indices.reshape((-1,) + window_size).shape[0]
indices = indices.reshape(num_perturbations, -1)
mask = np.zeros((num_perturbations, total_dim), dtype=np.bool)
for i in range(num_perturbations):
mask[i, indices[i]] = True
mask = mask.reshape((num_perturbations,) + inputs.shape[1:])
masks = np.tile(mask, reps=(inputs.shape[0],) + (1,) * len(mask.shape))
return masks

View File

@ -18,7 +18,7 @@
from mindspore.train._utils import check_value_type
from mindspore.nn import Cell
from .._attribution import Attribution
from ..attribution import Attribution
from ...._operators import softmax

View File

@ -0,0 +1,85 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Modules to generate perturbations."""
import numpy as np
from scipy.ndimage.filters import gaussian_filter
_Array = np.ndarray
__all__ = [
'BaseReplacement',
'Constant',
'GaussianBlur',
'RandomPerturb',
]
class BaseReplacement:
"""
Base class of generator for generating different replacement for perturbations.
Args:
kwargs: Optional args for generating replacement. Derived class need to
add necessary arg names and default value to '_necessary_args'.
If the argument has no default value, the value should be set to
'EMPTY' to mark the required args. Initializing an object will
check the given kwargs w.r.t '_necessary_args'.
Raise:
ValueError: Raise when provided kwargs not contain necessary arg names with 'EMPTY' mark.
"""
_necessary_args = {}
def __init__(self, **kwargs):
self._replace_args = self._necessary_args.copy()
for key, value in self._replace_args.items():
if key in kwargs.keys():
self._replace_args[key] = kwargs[key]
elif key not in kwargs.keys() and value == 'EMPTY':
raise ValueError(f"Missing keyword arg {key} for {self.__class__.__name__}.")
def __call__(self, inputs):
raise NotImplementedError()
class Constant(BaseReplacement):
"""Generator to provide constant-value replacement for perturbations."""
_necessary_args = {'base_value': 'EMPTY'}
def __call__(self, inputs: _Array) -> _Array:
replacement = np.ones_like(inputs, dtype=np.float32)
replacement *= self._replace_args['base_value']
return replacement
class GaussianBlur(BaseReplacement):
"""Generator to provided gaussian blurred inputs for perturbation"""
_necessary_args = {'sigma': 0.7}
def __call__(self, inputs: _Array) -> _Array:
sigma = self._replace_args['sigma']
replacement = gaussian_filter(inputs, sigma=sigma)
return replacement
class RandomPerturb(BaseReplacement):
"""Generator to provide replacement by randomly adding noise."""
_necessary_args = {'radius': 0.2}
def __call__(self, inputs: _Array) -> _Array:
radius = self._replace_args['radius']
outputs = inputs + (2 * np.random.rand(*inputs.shape) - 1) * radius
return outputs

View File

@ -64,6 +64,9 @@ class RISE(PerturbationAttribution):
activation_fn=nn.Softmax(),
perturbation_per_eval=32):
super(RISE, self).__init__(network, activation_fn)
check_value_type('perturbation_per-eval', perturbation_per_eval, int)
if perturbation_per_eval <= 0:
raise ValueError('perturbation_per_eval should be postive integer.')
self._perturbation_per_eval = perturbation_per_eval
self._num_masks = 6000 # number of masks to be sampled
@ -156,12 +159,11 @@ class RISE(PerturbationAttribution):
targets = self._unify_targets(inputs, targets)
attr_classes = []
for idx, target in enumerate(targets):
dtype = inputs.dtype
attr_np_idx = attr_np[idx]
attr_idx = attr_np_idx[target]
attr_classes.append(attr_idx)
return op.Tensor(attr_classes, dtype=dtype)
return op.Tensor(attr_classes, dtype=inputs.dtype)
@staticmethod
def _verify_data(inputs, targets):
@ -183,7 +185,7 @@ class RISE(PerturbationAttribution):
def _unify_targets(inputs, targets):
"""To unify targets to be 2D numpy.ndarray."""
if isinstance(targets, int):
return np.array([[targets] for i in inputs]).astype(np.int)
return np.array([[targets] for _ in inputs]).astype(np.int)
if isinstance(targets, Tensor):
if not targets.shape:
return np.array([[targets.asnumpy()] for _ in inputs]).astype(np.int)

View File

@ -16,8 +16,10 @@
from typing import Callable
import mindspore as ms
import mindspore.nn as nn
from mindspore.train._utils import check_value_type
from mindspore.nn import Cell
class Attribution:
"""
@ -26,15 +28,20 @@ class Attribution:
The explainers which explanation through attributing the relevance scores should inherit this class.
Args:
network (Cell): The black-box model to explain.
network (nn.Cell): The black-box model to explanation.
"""
def __init__(self, network):
check_value_type("network", network, Cell)
check_value_type("network", network, nn.Cell)
self._model = network
self._model.set_train(False)
self._model.set_grad(False)
@staticmethod
def _verify_model(model):
"""Verify the input `network` for __init__ function."""
if not isinstance(model, nn.Cell):
raise TypeError("The parsed `network` must be a `mindspore.nn.Cell` object.")
__call__: Callable
"""
@ -51,4 +58,17 @@ class Attribution:
@property
def model(self):
"""Return the model."""
return self._model
@staticmethod
def _verify_data(inputs, targets):
"""Verify the validity of the parsed inputs."""
check_value_type('inputs', inputs, ms.Tensor)
if len(inputs.shape) != 4:
raise ValueError('Argument inputs must be 4D Tensor')
check_value_type('targets', targets, (ms.Tensor, int))
if isinstance(targets, ms.Tensor):
if len(targets.shape) > 1 or (len(targets.shape) == 1 and len(targets) != len(inputs)):
raise ValueError('Argument targets must be a 1D or 0D Tensor. If it is a 1D Tensor, '
'it should have the same length as inputs.')