update docs for its format or some examples are wrong
This commit is contained in:
parent
15cd8afdbe
commit
4504db5525
|
@ -1760,7 +1760,7 @@ class ArgMaxWithValue(PrimitiveWithInfer):
|
|||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as
|
||||
:math:`(x_1, x_2, ..., x_N)`.
|
||||
:math:`(x_1, x_2, ..., x_N)`. And the data type only support mindspore.float16 or float32.
|
||||
|
||||
Outputs:
|
||||
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the maximum value of the input
|
||||
|
@ -2294,7 +2294,7 @@ class Concat(PrimitiveWithInfer):
|
|||
Suppose there are two tensors in this tuple or list, namely x1 and x2.
|
||||
To perform `Concat` in the axis 0 direction, except for the 0th axis, all other axes should be equal,
|
||||
that is, :math:`x1.shape[1] == x2.shape[1], x1.shape[2] == x2.shape[2], ..., x1.shape[R] == x2.shape[R]`,
|
||||
where the :math:`R' indicates the last axis.
|
||||
where the :math:`R` indicates the last axis.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape is :math:`(x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R)`.
|
||||
|
|
|
@ -8683,6 +8683,7 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
|||
class SoftShrink(Primitive):
|
||||
r"""
|
||||
Applies the soft shrinkage function elementwise.
|
||||
|
||||
.. math::
|
||||
\text{SoftShrink}(x) =
|
||||
\begin{cases}
|
||||
|
@ -8690,6 +8691,7 @@ class SoftShrink(Primitive):
|
|||
x + \lambda, & \text{ if } x < -\lambda \\
|
||||
0, & \text{ otherwise }
|
||||
\end{cases}
|
||||
|
||||
Args:
|
||||
lambd: the :math:`\lambda` must be no less than zero value for the Softshrink formulation. Default: 0.5.
|
||||
|
||||
|
|
Loading…
Reference in New Issue