!48366 Fix SearchSorted ERROR

Merge pull request !48366 from huangxinjing/code_docs_fix_search_sorted
This commit is contained in:
i-robot 2023-02-06 02:40:47 +00:00 committed by Gitee
commit 447c73b416
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
5 changed files with 38 additions and 11 deletions

View File

@ -344,9 +344,10 @@ Reduction函数
mindspore.ops.lt
mindspore.ops.maximum
mindspore.ops.minimum
mindspore.ops.msort
mindspore.ops.ne
mindspore.ops.not_equal
mindspore.ops.msort
mindspore.ops.searchsorted
mindspore.ops.topk
线性代数函数

View File

@ -0,0 +1,21 @@
mindspore.ops.searchsorted
==========================
.. py:function:: mindspore.ops.searchsorted(sorted_sequence, values, *, out_int32=False, right=False)
返回位置索引,根据这个索引将`values` 插入 `sorted_sequence`后,`sorted_sequence` 的最内维度的顺序保持不变。
参数:
- **sorted_sequence** (Tensor) - Tensor的形状为math:`(x_1x_2x_R-1x_R)``x_1`。在最里面的维度上必须包含单调递增的序列。
- **values** (Tensor) - 要插入元素的值。Tensor的形状为math:`(x_1x_2x_R-1x_S)`
关键字参数:
- **out_int32** (bool, 可选) - 输出数据类型。如果为True则输出数据类型将为int32如果为False则输出数据类型将为int64。默认值False。
- **right** (bool, 可选) - 搜索策略。如果为True则返回找到的最后一个合适的索引如果为False则返回第一个合适的索引。默认值False。
返回:
表示`sorted_sequence`最内维度的索引的Tensor如果插入`values` tensor中相应的值`sorted_sequence` tensor的顺序将被保留如果out_int32为True
则返回的数据类型为int32否则为int64并且形状与values的形状相同。
异常:
- **ValueError** - 如果 `sorted_sequence` 的维度不是1并且除 `sorted_sequence``values` 的最后一个维度之外的维度不同。

View File

@ -344,9 +344,10 @@ Comparison Functions
mindspore.ops.lt
mindspore.ops.maximum
mindspore.ops.minimum
mindspore.ops.msort
mindspore.ops.ne
mindspore.ops.not_equal
mindspore.ops.msort
mindspore.ops.searchsorted
mindspore.ops.topk
Linear Algebraic Functions

View File

@ -150,7 +150,8 @@ from .array_func import (
column_stack,
hstack,
movedim,
moveaxis
moveaxis,
searchsorted
)
from .parameter_func import (
assign,

View File

@ -1219,23 +1219,25 @@ def unique_consecutive(x, return_idx=False, return_counts=False, axis=None):
def searchsorted(sorted_sequence, values, *, out_int32=False, right=False):
"""
Find the indices from the innermost dimension of `sorted_sequence` such that the order of the innermost dimension
within `sorted_sequence` would be preserved when the corresponding values in `values` were inserted before the
indices.
Return the position indices such that after inserting the values into the `sorted_sequence`, the order of innermost
dimension of the `sorted_sequence` remains unchanged.
Args:
sorted_sequence (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_R)` or `(x_1)`.
It must contain a monotonically increasing sequence on the innermost dimension.
values (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_S)`.
values (Tensor): The value that should be inserted.
The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_S)`.
Keyword Args:
out_int32 (bool, optional): Output datatype. If True, the output datatype will be int32;
if False, the output datatype will be int64. Default: False.
right (bool, optional): Search Strategy. If True, return the last suitable index found;
if False, return the first such index. Default: False.
Returns:
Tensor containing the indices from the innermost dimension of the input sequence such that,
if insert the corresponding value in the values tensor, the order of the tensor sequence would be preserved,
whose datatype is int32 if out_int32 is True, otherwise int64, and shape is the same as the shape of values.
Tensor containing the indices from the innermost dimension of `sorted_sequence` such that,
if insert the corresponding value in the `values` tensor, the order of `sorted_sequence` would be preserved,
whose datatype is int32 if out_int32 is True, otherwise int64, and shape is the same as the shape of `values`.
Raises:
ValueError: If the dimension of `sorted_sequence` isn't 1 and all dimensions except the last dimension of
@ -1247,7 +1249,7 @@ def searchsorted(sorted_sequence, values, *, out_int32=False, right=False):
Examples:
>>> sorted_sequence = Tensor(np.array([[0, 1, 3, 5, 7], [2, 4, 6, 8, 10]]), mindspore.float32)
>>> values = Tensor(np.array([[3, 6, 9], [3, 6, 9]]), mindspore.float32)
>>> output = ops.SearchSorted()(sorted_sequence, values)
>>> output = ops.searchsorted(sorted_sequence, values)
>>> print(output)
[[2 4 5]
[1 2 4]]
@ -6715,6 +6717,7 @@ __all__ = [
'mvlgamma',
'swapaxes',
'swapdims',
'searchsorted',
'argsort',
'sequence_mask',
'repeat_elements',