add resnet50 imagenet st
This commit is contained in:
parent
09b5221c6a
commit
429c88a462
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
config = ed({
|
||||
"class_num": 1001,
|
||||
"batch_size": 32,
|
||||
"eval_interval": 1,
|
||||
"eval_batch_size": 50,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"use_nesterov": True,
|
||||
"epoch_size": 90,
|
||||
"pretrained_epoch_size": 1,
|
||||
"buffer_size": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"save_checkpoint": False,
|
||||
"save_checkpoint_epochs": 5,
|
||||
"keep_checkpoint_max": 10,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 0,
|
||||
"lr_decay_mode": "cosine",
|
||||
"use_label_smooth": True,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0,
|
||||
"lr_max": 0.1,
|
||||
"use_lars": True,
|
||||
"lars_epsilon": 1e-8,
|
||||
"lars_coefficient": 0.001
|
||||
})
|
|
@ -0,0 +1,79 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""create train or eval dataset."""
|
||||
|
||||
import os
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
|
||||
|
||||
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||
"""
|
||||
create a train or eval dataset.
|
||||
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1
|
||||
batch_size(int): the batch size of dataset. Default: 32
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
|
||||
device_num = int(os.getenv("RANK_SIZE"))
|
||||
rank_id = int(os.getenv("RANK_ID"))
|
||||
if device_num == 1:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
|
||||
image_size = 224
|
||||
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
||||
|
||||
# define map operations
|
||||
if do_train:
|
||||
trans = [
|
||||
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
C.Decode(),
|
||||
C.Resize((256, 256)),
|
||||
C.CenterCrop(image_size),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans)
|
||||
ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op)
|
||||
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
|
||||
# apply dataset repeat operation
|
||||
ds = ds.repeat(repeat_num)
|
||||
return ds
|
|
@ -0,0 +1,87 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_learning_rate(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
lr_init(float): init learning rate
|
||||
lr_end(float): end learning rate
|
||||
lr_max(float): max learning rate
|
||||
warmup_epochs(int): number of warmup epochs
|
||||
total_epochs(int): total epoch of training
|
||||
steps_per_epoch(int): steps of one epoch
|
||||
lr_decay_mode(string): learning rate decay mode, including steps, poly, cosine or default
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
warmup_steps = steps_per_epoch * warmup_epochs
|
||||
if lr_decay_mode == 'steps':
|
||||
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
||||
for i in range(total_steps):
|
||||
if i < decay_epoch_index[0]:
|
||||
lr = lr_max
|
||||
elif i < decay_epoch_index[1]:
|
||||
lr = lr_max * 0.1
|
||||
elif i < decay_epoch_index[2]:
|
||||
lr = lr_max * 0.01
|
||||
else:
|
||||
lr = lr_max * 0.001
|
||||
lr_each_step.append(lr)
|
||||
elif lr_decay_mode == 'poly':
|
||||
if warmup_steps != 0:
|
||||
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||
else:
|
||||
inc_each_step = 0
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = float(lr_init) + inc_each_step * float(i)
|
||||
else:
|
||||
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
|
||||
lr = float(lr_max) * base * base
|
||||
if lr < 0.0:
|
||||
lr = 0.0
|
||||
lr_each_step.append(lr)
|
||||
elif lr_decay_mode == 'cosine':
|
||||
decay_steps = total_steps - warmup_steps
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||
lr = float(lr_init) + lr_inc * (i + 1)
|
||||
else:
|
||||
linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
|
||||
decayed = linear_decay * cosine_decay + 0.00001
|
||||
lr = lr_max * decayed
|
||||
lr_each_step.append(lr)
|
||||
else:
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
||||
else:
|
||||
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
||||
lr_each_step.append(lr)
|
||||
|
||||
learning_rate = np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
return learning_rate
|
|
@ -0,0 +1,132 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""evaluation metric."""
|
||||
|
||||
from mindspore.communication.management import GlobalComm
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
|
||||
|
||||
class ClassifyCorrectCell(nn.Cell):
|
||||
r"""
|
||||
Cell that returns correct count of the prediction in classification network.
|
||||
This Cell accepts a network as arguments.
|
||||
It returns orrect count of the prediction to calculate the metrics.
|
||||
|
||||
Args:
|
||||
network (Cell): The network Cell.
|
||||
|
||||
Inputs:
|
||||
- **data** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
|
||||
- **label** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
|
||||
|
||||
Outputs:
|
||||
Tuple, containing a scalar correct count of the prediction
|
||||
|
||||
Examples:
|
||||
>>> # For a defined network Net without loss function
|
||||
>>> net = Net()
|
||||
>>> eval_net = nn.ClassifyCorrectCell(net)
|
||||
"""
|
||||
|
||||
def __init__(self, network):
|
||||
super(ClassifyCorrectCell, self).__init__(auto_prefix=False)
|
||||
self._network = network
|
||||
self.argmax = P.Argmax()
|
||||
self.equal = P.Equal()
|
||||
self.cast = P.Cast()
|
||||
self.reduce_sum = P.ReduceSum()
|
||||
self.allreduce = P.AllReduce(P.ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP)
|
||||
|
||||
def construct(self, data, label):
|
||||
outputs = self._network(data)
|
||||
y_pred = self.argmax(outputs)
|
||||
y_pred = self.cast(y_pred, mstype.int32)
|
||||
y_correct = self.equal(y_pred, label)
|
||||
y_correct = self.cast(y_correct, mstype.float32)
|
||||
y_correct = self.reduce_sum(y_correct)
|
||||
total_correct = self.allreduce(y_correct)
|
||||
return (total_correct,)
|
||||
|
||||
|
||||
class DistAccuracy(nn.Metric):
|
||||
r"""
|
||||
Calculates the accuracy for classification data in distributed mode.
|
||||
The accuracy class creates two local variables, correct number and total number that are used to compute the
|
||||
frequency with which predictions matches labels. This frequency is ultimately returned as the accuracy: an
|
||||
idempotent operation that simply divides correct number by total number.
|
||||
|
||||
.. math::
|
||||
|
||||
\text{accuracy} =\frac{\text{true_positive} + \text{true_negative}}
|
||||
|
||||
{\text{true_positive} + \text{true_negative} + \text{false_positive} + \text{false_negative}}
|
||||
|
||||
Args:
|
||||
eval_type (str): Metric to calculate the accuracy over a dataset, for classification (single-label).
|
||||
|
||||
Examples:
|
||||
>>> y_correct = Tensor(np.array([20]))
|
||||
>>> metric = nn.DistAccuracy(batch_size=3, device_num=8)
|
||||
>>> metric.clear()
|
||||
>>> metric.update(y_correct)
|
||||
>>> accuracy = metric.eval()
|
||||
"""
|
||||
|
||||
def __init__(self, batch_size, device_num):
|
||||
super(DistAccuracy, self).__init__()
|
||||
self.clear()
|
||||
self.batch_size = batch_size
|
||||
self.device_num = device_num
|
||||
|
||||
def clear(self):
|
||||
"""Clears the internal evaluation result."""
|
||||
self._correct_num = 0
|
||||
self._total_num = 0
|
||||
|
||||
def update(self, *inputs):
|
||||
"""
|
||||
Updates the internal evaluation result :math:`y_{pred}` and :math:`y`.
|
||||
|
||||
Args:
|
||||
inputs: Input `y_correct`. `y_correct` is a `scalar Tensor`.
|
||||
`y_correct` is the right prediction count that gathered from all devices
|
||||
it's a scalar in float type
|
||||
|
||||
Raises:
|
||||
ValueError: If the number of the input is not 1.
|
||||
"""
|
||||
|
||||
if len(inputs) != 1:
|
||||
raise ValueError('Distribute accuracy needs 1 input (y_correct), but got {}'.format(len(inputs)))
|
||||
y_correct = self._convert_data(inputs[0])
|
||||
self._correct_num += y_correct
|
||||
self._total_num += self.batch_size * self.device_num
|
||||
|
||||
def eval(self):
|
||||
"""
|
||||
Computes the accuracy.
|
||||
|
||||
Returns:
|
||||
Float, the computed result.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the sample size is 0.
|
||||
"""
|
||||
|
||||
if self._total_num == 0:
|
||||
raise RuntimeError('Accuracy can not be calculated, because the number of samples is 0.')
|
||||
return self._correct_num / self._total_num
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
config = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 32,
|
||||
"loss_scale": 128,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 5e-4,
|
||||
"epoch_size": 45,
|
||||
"buffer_size": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_steps": 5004,
|
||||
"keep_checkpoint_max": 20,
|
||||
"save_checkpoint_path": "./",
|
||||
"label_smooth": 1,
|
||||
"label_smooth_factor": 0.1,
|
||||
"frequency": 834,
|
||||
"eval_interval": 1,
|
||||
"eval_batch_size": 32
|
||||
})
|
|
@ -0,0 +1,82 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""create train or eval dataset."""
|
||||
|
||||
import os
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as dataset
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||
|
||||
dataset.config.set_seed(1)
|
||||
|
||||
|
||||
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||
"""
|
||||
Create a train or eval dataset.
|
||||
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1
|
||||
batch_size(int): the batch size of dataset. Default: 32
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
|
||||
device_num = int(os.getenv("RANK_SIZE"))
|
||||
rank_id = int(os.getenv("RANK_ID"))
|
||||
if device_num == 1:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
|
||||
image_size = 224
|
||||
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
||||
|
||||
# define map operations
|
||||
if do_train:
|
||||
trans = [
|
||||
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
C.Decode(),
|
||||
C.Resize((256, 256)),
|
||||
C.CenterCrop(image_size),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans)
|
||||
ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op)
|
||||
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
|
||||
# apply dataset repeat operation
|
||||
ds = ds.repeat(repeat_num)
|
||||
return ds
|
|
@ -0,0 +1,120 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Dataset help for minddata dataset"""
|
||||
from mindspore._checkparam import check_bool
|
||||
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode
|
||||
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \
|
||||
_to_full_shapes
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
|
||||
|
||||
class DatasetHelper:
|
||||
"""
|
||||
Help function to use the Minddata dataset.
|
||||
|
||||
According to different context, change the iter of dataset, to use the same for loop in different context.
|
||||
|
||||
Note:
|
||||
The iter of DatasetHelper will give one epoch data.
|
||||
|
||||
Args:
|
||||
dataset (DataSet): The dataset.
|
||||
dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host.
|
||||
Default: True.
|
||||
iter_first_order (int): The iteration of first-order subgraph.
|
||||
Default: 1.
|
||||
|
||||
Examples:
|
||||
>>> dataset_helper = DatasetHelper(dataset)
|
||||
>>> for inputs in dataset_helper:
|
||||
>>> outputs = network(*inputs)
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0):
|
||||
check_bool(dataset_sink_mode)
|
||||
self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order)
|
||||
|
||||
def __iter__(self):
|
||||
return self.iter.__iter__()
|
||||
|
||||
# A temp solution for loop sink. Delete later
|
||||
def types_shapes(self):
|
||||
"""Get the types and shapes from dataset on current config."""
|
||||
return self.iter.types_shapes()
|
||||
|
||||
def loop_size(self):
|
||||
"""Get loop_size for every iteration."""
|
||||
return self.iter.loop_size
|
||||
|
||||
|
||||
class _DatasetIter:
|
||||
"""Base iter for dataset help"""
|
||||
|
||||
def __init__(self, dataset):
|
||||
self.loop_size = 1
|
||||
if not hasattr(dataset, '__ME_INITED__'):
|
||||
if not hasattr(dataset, '__loop_size__'):
|
||||
self.loop_size = dataset.get_dataset_size()
|
||||
else:
|
||||
self.loop_size = dataset.__loop_size__
|
||||
dataset.__ME_INITED__ = _exec_datagraph(dataset, self.loop_size).queue_name
|
||||
|
||||
self.ind = 0
|
||||
self.dataset = dataset
|
||||
dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
|
||||
self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
|
||||
|
||||
def __iter__(self):
|
||||
self.ind = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.ind >= self.loop_count:
|
||||
raise StopIteration()
|
||||
self.ind += 1
|
||||
return self.op()
|
||||
|
||||
def types_shapes(self):
|
||||
return self.dataset_types, self.dataset_shapes
|
||||
|
||||
def get_loop_count(self, dataset):
|
||||
loop_count = 1
|
||||
if hasattr(dataset, '__loop_size__'):
|
||||
loop_size = dataset.__loop_size__
|
||||
if dataset.get_dataset_size() % loop_size != 0:
|
||||
raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
|
||||
f'loop_size {loop_size} are not matched.')
|
||||
loop_count = int(dataset.get_dataset_size() / loop_size)
|
||||
return loop_count
|
||||
|
||||
|
||||
class _DatasetIterMSLoopSink(_DatasetIter):
|
||||
"""Iter for context (device_target=Ascend)"""
|
||||
|
||||
def __init__(self, dataset, iter_first_order):
|
||||
super(_DatasetIterMSLoopSink, self).__init__(dataset)
|
||||
loop_size = dataset.__loop_size__ + iter_first_order
|
||||
self.loop_count = int(dataset.get_dataset_size() / loop_size * 2)
|
||||
# for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
|
||||
# compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
|
||||
# times the batch dimension of tensors for run. Now only support LoopSink.
|
||||
if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
device_num = _get_device_num()
|
||||
self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
|
||||
|
||||
def op():
|
||||
return tuple()
|
||||
|
||||
self.op = op
|
|
@ -0,0 +1,184 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""grad_reducer_thor"""
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.communication.management import GlobalComm, get_group_size
|
||||
from mindspore.nn.cell import Cell
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.ops.operations.comm_ops import AllReduce, ReduceOp
|
||||
|
||||
reduce_opt = C.MultitypeFuncGraph("reduce_opt")
|
||||
|
||||
_all_reduce_A = AllReduce()
|
||||
|
||||
|
||||
def _init_optimizer_allreduce(group):
|
||||
global _all_reduce_A
|
||||
_all_reduce_A = AllReduce(ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP)
|
||||
_all_reduce_A.add_prim_attr('fusion', group)
|
||||
|
||||
|
||||
@reduce_opt.register("Function", "Number", "Tensor")
|
||||
def _tensors_allreduce_mean(mul, degree, grad):
|
||||
degree = F.scalar_cast(degree, F.dtype(grad))
|
||||
grad = _all_reduce_A(grad)
|
||||
cast_op = P.Cast()
|
||||
return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad)))
|
||||
|
||||
|
||||
@reduce_opt.register("Bool", "Tensor")
|
||||
def _tensors_allreduce(allreduce_filter, grad):
|
||||
if allreduce_filter:
|
||||
return _all_reduce_A(grad)
|
||||
return grad
|
||||
|
||||
|
||||
_get_datatype = C.MultitypeFuncGraph("_get_datatype")
|
||||
|
||||
|
||||
@_get_datatype.register("Tensor")
|
||||
def _tensors_get_datatype(grad):
|
||||
"""
|
||||
Acquire gradient datatype.
|
||||
|
||||
Args:
|
||||
grad (Tensor): The gradient tensor before operation.
|
||||
|
||||
Returns:
|
||||
mstype, the datatype of gradient.
|
||||
"""
|
||||
return F.dtype(grad)
|
||||
|
||||
|
||||
_cast_datatype = C.MultitypeFuncGraph("_cast_datatype")
|
||||
|
||||
|
||||
@_cast_datatype.register("TypeType", "Tensor")
|
||||
def _tensors_cast_datatype(datatype, grad):
|
||||
"""
|
||||
Cast gradient to datatype.
|
||||
|
||||
Args:
|
||||
datatype (mstype): the destination datatype of gradient.
|
||||
grad (Tensor): The gradient tensor before operation.
|
||||
|
||||
Returns:
|
||||
Tensor, the gradient tensor after operation.
|
||||
"""
|
||||
return F.cast(grad, datatype)
|
||||
|
||||
|
||||
class DistributedGradReducerThor(Cell):
|
||||
"""
|
||||
A distributed optimizer.
|
||||
|
||||
Constructs a gradient reducer Cell, which applies communication and average operations on
|
||||
single-process gradient values.
|
||||
|
||||
Args:
|
||||
parameters (list): the parameters to be updated.
|
||||
group (int): the different group to allreduce.
|
||||
mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients. Default: False.
|
||||
degree (int): The mean coefficient. Usually it equals to device number. Default: None.
|
||||
|
||||
Raises:
|
||||
ValueError: If degree is not a int or less than 0.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.communication import init, get_group_size
|
||||
>>> from mindspore.ops import composite as C
|
||||
>>> from mindspore.ops import operations as P
|
||||
>>> from mindspore.ops import functional as F
|
||||
>>> from mindspore import context
|
||||
>>> from mindspore import nn
|
||||
>>> from mindspore import ParallelMode, ParameterTuple
|
||||
>>>
|
||||
>>> device_id = int(os.environ["DEVICE_ID"])
|
||||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True,
|
||||
>>> device_id=int(device_id), enable_hccl=True)
|
||||
>>> init()
|
||||
>>> context.reset_auto_parallel_context()
|
||||
>>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL)
|
||||
>>>
|
||||
>>>
|
||||
>>> class TrainingWrapper(nn.Cell):
|
||||
>>> def __init__(self, network, optimizer, sens=1.0):
|
||||
>>> super(TrainingWrapper, self).__init__(auto_prefix=False)
|
||||
>>> self.network = network
|
||||
>>> self.network.add_flags(defer_inline=True)
|
||||
>>> self.weights = ParameterTuple(network.trainable_params())
|
||||
>>> self.optimizer = optimizer
|
||||
>>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
|
||||
>>> self.sens = sens
|
||||
>>> self.reducer_flag = False
|
||||
>>> self.grad_reducer = None
|
||||
>>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
||||
>>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL,
|
||||
>>> ParallelMode.HYBRID_PARALLEL]:
|
||||
>>> self.reducer_flag = True
|
||||
>>> if self.reducer_flag:
|
||||
>>> mean = context.get_auto_parallel_context("mirror_mean")
|
||||
>>> if mean.get_device_num_is_set():
|
||||
>>> degree = context.get_auto_parallel_context("device_num")
|
||||
>>> else:
|
||||
>>> degree = get_group_size()
|
||||
>>> self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree)
|
||||
>>>
|
||||
>>> def construct(self, *args):
|
||||
>>> weights = self.weights
|
||||
>>> loss = self.network(*args)
|
||||
>>> sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
|
||||
>>> grads = self.grad(self.network, weights)(*args, sens)
|
||||
>>> if self.reducer_flag:
|
||||
>>> # apply grad reducer on grads
|
||||
>>> grads = self.grad_reducer(grads)
|
||||
>>> return F.depend(loss, self.optimizer(grads))
|
||||
>>>
|
||||
>>> network = Net()
|
||||
>>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> train_cell = TrainingWrapper(network, optimizer)
|
||||
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> grads = train_cell(inputs, label)
|
||||
"""
|
||||
|
||||
def __init__(self, parameters, group, mean=True, degree=None):
|
||||
super(DistributedGradReducerThor, self).__init__(auto_prefix=False)
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.mul = P.Mul()
|
||||
if degree is None:
|
||||
self.degree = get_group_size()
|
||||
else:
|
||||
if not isinstance(degree, int) or degree <= 0:
|
||||
raise ValueError("Parameter 'degree' in DistributedGradReducer should large than 0 and be int")
|
||||
self.degree = degree
|
||||
self.mean = mean
|
||||
self.allreduce_filter = tuple(x.layerwise_parallel is False for x in parameters)
|
||||
_init_optimizer_allreduce(group)
|
||||
|
||||
def construct(self, grads):
|
||||
# In some circumstances, the data precision of grads could be mixed with float16 and float32. Thus, the
|
||||
# result of AllReduce is unreliable. To solve the problem, grads should be cast to float32 before AllReduce,
|
||||
# and cast back after the operation.
|
||||
datatypes = self.hyper_map(F.partial(_get_datatype), grads)
|
||||
grads = self.hyper_map(F.partial(_cast_datatype, mstype.float32), grads)
|
||||
|
||||
if self.mean:
|
||||
new_grad = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), grads)
|
||||
else:
|
||||
new_grad = self.hyper_map(F.partial(reduce_opt), self.allreduce_filter, grads)
|
||||
|
||||
new_grad = self.hyper_map(F.partial(_cast_datatype), datatypes, new_grad)
|
||||
return new_grad
|
|
@ -0,0 +1,88 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
lr_init(float): init learning rate
|
||||
lr_end(float): end learning rate
|
||||
lr_max(float): max learning rate
|
||||
warmup_epochs(int): number of warmup epochs
|
||||
total_epochs(int): total epoch of training
|
||||
steps_per_epoch(int): steps of one epoch
|
||||
lr_decay_mode(string): learning rate decay mode, including steps, poly, cosine or default
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
warmup_steps = steps_per_epoch * warmup_epochs
|
||||
if lr_decay_mode == 'steps':
|
||||
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
||||
for i in range(total_steps):
|
||||
if i < decay_epoch_index[0]:
|
||||
lr = lr_max
|
||||
elif i < decay_epoch_index[1]:
|
||||
lr = lr_max * 0.1
|
||||
elif i < decay_epoch_index[2]:
|
||||
lr = lr_max * 0.01
|
||||
else:
|
||||
lr = lr_max * 0.001
|
||||
lr_each_step.append(lr)
|
||||
elif lr_decay_mode == 'poly':
|
||||
if warmup_steps != 0:
|
||||
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||
else:
|
||||
inc_each_step = 0
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = float(lr_init) + inc_each_step * float(i)
|
||||
else:
|
||||
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
|
||||
lr = float(lr_max) * base * base
|
||||
if lr < 0.0:
|
||||
lr = 0.0
|
||||
lr_each_step.append(lr)
|
||||
elif lr_decay_mode == 'cosine':
|
||||
decay_steps = total_steps - warmup_steps
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||
lr = float(lr_init) + lr_inc * (i + 1)
|
||||
else:
|
||||
linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
|
||||
decayed = linear_decay * cosine_decay + 0.00001
|
||||
lr = lr_max * decayed
|
||||
lr_each_step.append(lr)
|
||||
else:
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
||||
else:
|
||||
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
||||
lr_each_step.append(lr)
|
||||
|
||||
learning_rate = np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
return learning_rate
|
|
@ -0,0 +1,132 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""evaluation metric."""
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
from mindspore.communication.management import GlobalComm
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class ClassifyCorrectCell(nn.Cell):
|
||||
r"""
|
||||
Cell that returns correct count of the prediction in classification network.
|
||||
This Cell accepts a network as arguments.
|
||||
It returns orrect count of the prediction to calculate the metrics.
|
||||
|
||||
Args:
|
||||
network (Cell): The network Cell.
|
||||
|
||||
Inputs:
|
||||
- **data** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
|
||||
- **label** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
|
||||
|
||||
Outputs:
|
||||
Tuple, containing a scalar correct count of the prediction
|
||||
|
||||
Examples:
|
||||
>>> # For a defined network Net without loss function
|
||||
>>> net = Net()
|
||||
>>> eval_net = nn.ClassifyCorrectCell(net)
|
||||
"""
|
||||
|
||||
def __init__(self, network):
|
||||
super(ClassifyCorrectCell, self).__init__(auto_prefix=False)
|
||||
self._network = network
|
||||
self.argmax = P.Argmax()
|
||||
self.equal = P.Equal()
|
||||
self.cast = P.Cast()
|
||||
self.reduce_sum = P.ReduceSum()
|
||||
self.allreduce = P.AllReduce(P.ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP)
|
||||
|
||||
def construct(self, data, label):
|
||||
outputs = self._network(data)
|
||||
y_pred = self.argmax(outputs)
|
||||
y_pred = self.cast(y_pred, mstype.int32)
|
||||
y_correct = self.equal(y_pred, label)
|
||||
y_correct = self.cast(y_correct, mstype.float32)
|
||||
y_correct = self.reduce_sum(y_correct)
|
||||
total_correct = self.allreduce(y_correct)
|
||||
return (total_correct,)
|
||||
|
||||
|
||||
class DistAccuracy(nn.Metric):
|
||||
r"""
|
||||
Calculates the accuracy for classification data in distributed mode.
|
||||
The accuracy class creates two local variables, correct number and total number that are used to compute the
|
||||
frequency with which predictions matches labels. This frequency is ultimately returned as the accuracy: an
|
||||
idempotent operation that simply divides correct number by total number.
|
||||
|
||||
.. math::
|
||||
|
||||
\text{accuracy} =\frac{\text{true_positive} + \text{true_negative}}
|
||||
|
||||
{\text{true_positive} + \text{true_negative} + \text{false_positive} + \text{false_negative}}
|
||||
|
||||
Args:
|
||||
batch_size (int): eval batch size.
|
||||
device_num (int): device number to eval.
|
||||
Examples:
|
||||
>>> y_correct = Tensor(np.array([20]))
|
||||
>>> metric = nn.DistAccuracy(batch_size=3, device_num=8)
|
||||
>>> metric.clear()
|
||||
>>> metric.update(y_correct)
|
||||
>>> accuracy = metric.eval()
|
||||
"""
|
||||
|
||||
def __init__(self, batch_size, device_num):
|
||||
super(DistAccuracy, self).__init__()
|
||||
self.clear()
|
||||
self.batch_size = batch_size
|
||||
self.device_num = device_num
|
||||
|
||||
def clear(self):
|
||||
"""Clears the internal evaluation result."""
|
||||
self._correct_num = 0
|
||||
self._total_num = 0
|
||||
|
||||
def update(self, *inputs):
|
||||
"""
|
||||
Updates the internal evaluation result :math:`y_{pred}` and :math:`y`.
|
||||
|
||||
Args:
|
||||
inputs: Input `y_correct`. `y_correct` is a `scalar Tensor`.
|
||||
`y_correct` is the right prediction count that gathered from all devices
|
||||
it's a scalar in float type
|
||||
|
||||
Raises:
|
||||
ValueError: If the number of the input is not 1.
|
||||
"""
|
||||
|
||||
if len(inputs) != 1:
|
||||
raise ValueError('Distribute accuracy needs 1 input (y_correct), but got {}'.format(len(inputs)))
|
||||
y_correct = self._convert_data(inputs[0])
|
||||
self._correct_num += y_correct
|
||||
self._total_num += self.batch_size * self.device_num
|
||||
|
||||
def eval(self):
|
||||
"""
|
||||
Computes the accuracy.
|
||||
|
||||
Returns:
|
||||
Float, the computed result.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the sample size is 0.
|
||||
"""
|
||||
|
||||
if self._total_num == 0:
|
||||
raise RuntimeError('Accuracy can not be calculated, because the number of samples is 0.')
|
||||
return self._correct_num / self._total_num
|
|
@ -0,0 +1,743 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Model."""
|
||||
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore import nn
|
||||
from mindspore._c_expression import init_exec_dataset
|
||||
from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.dtype import pytype_to_dtype
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.metrics import Loss
|
||||
from mindspore.nn.metrics import get_metrics
|
||||
from mindspore.nn.wrap.cell_wrapper import _VirtualDatasetCell
|
||||
from mindspore.parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \
|
||||
_get_parameter_broadcast, _device_number_check, _parameter_broadcast_check
|
||||
from mindspore.train import amp
|
||||
from mindspore.train.callback import _InternalCallbackParam, RunContext, _build_callbacks
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
|
||||
from .dataset_helper import DatasetHelper
|
||||
|
||||
|
||||
def _convert_type(types):
|
||||
"""
|
||||
Convert from numpy type to tensor type.
|
||||
|
||||
Args:
|
||||
types (list): Numpy type list of element in dataset.
|
||||
|
||||
Returns:
|
||||
list, list of element in dataset.
|
||||
"""
|
||||
ms_types = []
|
||||
for np_type in types:
|
||||
ms_type = pytype_to_dtype(np_type)
|
||||
ms_types.append(ms_type)
|
||||
return ms_types
|
||||
|
||||
|
||||
def _get_types_and_shapes(dataset):
|
||||
"""Get dataset types and shapes."""
|
||||
dataset_types = _convert_type(dataset.output_types())
|
||||
dataset_shapes = dataset.output_shapes()
|
||||
return dataset_types, dataset_shapes
|
||||
|
||||
|
||||
def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'):
|
||||
"""Initialize and execute the dataset graph."""
|
||||
batch_size = exec_dataset.get_batch_size()
|
||||
input_indexs = exec_dataset.input_indexs
|
||||
|
||||
# transform data format
|
||||
dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset)
|
||||
init_exec_dataset(exec_dataset.__ME_INITED__,
|
||||
dataset_size,
|
||||
batch_size,
|
||||
dataset_types,
|
||||
dataset_shapes,
|
||||
input_indexs,
|
||||
phase=phase,
|
||||
need_run=False)
|
||||
|
||||
|
||||
class Model:
|
||||
"""
|
||||
High-Level API for Training or Testing.
|
||||
|
||||
`Model` groups layers into an object with training and inference features.
|
||||
|
||||
Args:
|
||||
network (Cell): The training or testing network.
|
||||
loss_fn (Cell): Objective function, if loss_fn is None, the
|
||||
network should contain the logic of loss and grads calculation, and the logic
|
||||
of parallel if needed. Default: None.
|
||||
optimizer (Cell): Optimizer for updating the weights. Default: None.
|
||||
metrics (Union[dict, set]): Dict or set of metrics to be evaluated by the model during
|
||||
training and testing. eg: {'accuracy', 'recall'}. Default: None.
|
||||
eval_network (Cell): Network for evaluation. If not defined, `network` and `loss_fn` would be wrapped as
|
||||
`eval_network`. Default: None.
|
||||
eval_indexes (list): In case of defining the `eval_network`, if `eval_indexes` is None, all outputs of
|
||||
`eval_network` would be passed to metrics, otherwise `eval_indexes` must contain three
|
||||
elements, representing the positions of loss value, predict value and label, the loss
|
||||
value would be passed to `Loss` metric, predict value and label would be passed to other
|
||||
metric. Default: None.
|
||||
amp_level (str): Option for argument `level` in `mindspore.amp.build_train_network`, level for mixed
|
||||
precision training. Supports [O0, O2]. Default: "O0".
|
||||
|
||||
- O0: Do not change.
|
||||
- O2: Cast network to float16, keep batchnorm run in float32, using dynamic loss scale.
|
||||
|
||||
loss_scale_manager (Union[None, LossScaleManager]): If None, not scale the loss, or else
|
||||
scale the loss by LossScaleManager. If it is set, overwrite the level setting. It's a eyword argument.
|
||||
e.g. Use `loss_scale_manager=None` to set the value.
|
||||
keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32`. If set, overwrite the level setting. Default: True.
|
||||
|
||||
Examples:
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal')
|
||||
>>> self.bn = nn.BatchNorm2d(64)
|
||||
>>> self.relu = nn.ReLU()
|
||||
>>> self.flatten = nn.Flatten()
|
||||
>>> self.fc = nn.Dense(64*224*224, 12) # padding=0
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> x = self.conv(x)
|
||||
>>> x = self.bn(x)
|
||||
>>> x = self.relu(x)
|
||||
>>> x = self.flatten(x)
|
||||
>>> out = self.fc(x)
|
||||
>>> return out
|
||||
>>>
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
>>> dataset = get_dataset()
|
||||
>>> model.train(2, dataset)
|
||||
"""
|
||||
|
||||
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None,
|
||||
eval_indexes=None, amp_level="O0", frequency=278, stop_epoch=100, **kwargs):
|
||||
self._network = network
|
||||
self._loss_fn = loss_fn
|
||||
self._optimizer = optimizer
|
||||
self._loss_scale_manager = None
|
||||
self._loss_scale_manager_set = False
|
||||
self._keep_bn_fp32 = True
|
||||
self._check_kwargs(kwargs)
|
||||
self._amp_level = amp_level
|
||||
self._process_amp_args(kwargs)
|
||||
self._parallel_mode = _get_parallel_mode()
|
||||
self._device_number = _get_device_num()
|
||||
self._global_rank = _get_global_rank()
|
||||
self._parameter_broadcast = _get_parameter_broadcast()
|
||||
self._frequency = frequency
|
||||
self._stop_epoch = stop_epoch
|
||||
self._has_do_dataset_init = False
|
||||
|
||||
self._train_network = self._build_train_network()
|
||||
self._build_eval_network(metrics, eval_network, eval_indexes)
|
||||
self._build_predict_network()
|
||||
|
||||
def _process_amp_args(self, kwargs):
|
||||
if self._amp_level == "O0":
|
||||
self._keep_bn_fp32 = False
|
||||
if 'keep_batchnorm_fp32' in kwargs:
|
||||
self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32']
|
||||
if 'loss_scale_manager' in kwargs:
|
||||
self._loss_scale_manager = kwargs['loss_scale_manager']
|
||||
self._loss_scale_manager_set = True
|
||||
|
||||
def _check_kwargs(self, kwargs):
|
||||
for arg in kwargs:
|
||||
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']:
|
||||
raise ValueError(f"Unsupport arg '{arg}'")
|
||||
|
||||
def _build_train_network(self):
|
||||
"""Build train network"""
|
||||
network = self._network
|
||||
if self._optimizer:
|
||||
if self._loss_scale_manager_set:
|
||||
network = amp.build_train_network(network,
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
loss_scale_manager=self._loss_scale_manager,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
else:
|
||||
network = amp.build_train_network(network,
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
elif self._loss_fn:
|
||||
network = nn.WithLossCell(network, self._loss_fn)
|
||||
# If need to check if loss_fn is not None, but optimizer is None
|
||||
|
||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
network.set_auto_parallel()
|
||||
return network
|
||||
|
||||
def _build_eval_network(self, metrics, eval_network, eval_indexes):
|
||||
"""Build the network for evaluation."""
|
||||
self._metric_fns = get_metrics(metrics)
|
||||
if not self._metric_fns:
|
||||
return
|
||||
|
||||
if eval_network is not None:
|
||||
if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3):
|
||||
raise ValueError("Eval_indexes must be a list or None. If eval_indexes is a list, length of it \
|
||||
must be three. But got {}".format(eval_indexes))
|
||||
|
||||
self._eval_network = eval_network
|
||||
self._eval_indexes = eval_indexes
|
||||
else:
|
||||
if self._loss_fn is None:
|
||||
raise ValueError("loss_fn can not be None.")
|
||||
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level == "O2")
|
||||
self._eval_indexes = [0, 1, 2]
|
||||
|
||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
self._eval_network.set_auto_parallel()
|
||||
|
||||
def _build_predict_network(self):
|
||||
"""Build the network for prediction."""
|
||||
self._predict_network = self._network
|
||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
self._predict_network = _VirtualDatasetCell(self._network)
|
||||
self._predict_network.set_auto_parallel()
|
||||
|
||||
def _clear_metrics(self):
|
||||
"""Clear metrics local values."""
|
||||
for metric in self._metric_fns.values():
|
||||
metric.clear()
|
||||
|
||||
def _update_metrics(self, outputs):
|
||||
"""Update metrics local values."""
|
||||
if not isinstance(outputs, tuple):
|
||||
raise ValueError("The `outputs` is not tuple.")
|
||||
|
||||
if self._eval_indexes is not None and len(outputs) < 3:
|
||||
raise ValueError("The length of `outputs` must be greater than or equal to 3, \
|
||||
but got {}".format(len(outputs)))
|
||||
|
||||
for metric in self._metric_fns.values():
|
||||
if self._eval_indexes is None:
|
||||
metric.update(*outputs)
|
||||
else:
|
||||
if isinstance(metric, Loss):
|
||||
metric.update(outputs[self._eval_indexes[0]])
|
||||
else:
|
||||
metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]])
|
||||
|
||||
def _get_metrics(self):
|
||||
"""Get metrics local values."""
|
||||
metrics = dict()
|
||||
for key, value in self._metric_fns.items():
|
||||
metrics[key] = value.eval()
|
||||
return metrics
|
||||
|
||||
def _get_scaling_sens(self):
|
||||
"""get the scaling sens"""
|
||||
scaling_sens = 1
|
||||
if self._loss_scale_manager is not None:
|
||||
scaling_sens = self._loss_scale_manager.get_loss_scale()
|
||||
if self._parallel_mode == ParallelMode.DATA_PARALLEL:
|
||||
scaling_sens /= self._device_number
|
||||
return scaling_sens
|
||||
|
||||
def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, iter_first_order=1):
|
||||
"""Initializes dataset."""
|
||||
need_wrap = False
|
||||
if dataset_sink_mode:
|
||||
# remove later to deal with loop sink
|
||||
if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
if not is_train:
|
||||
dataset.__loop_size__ = 1
|
||||
|
||||
dataset_helper = DatasetHelper(dataset, dataset_sink_mode, iter_first_order)
|
||||
|
||||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__)
|
||||
network.set_train(is_train)
|
||||
network.phase = phase
|
||||
|
||||
return dataset_helper, network
|
||||
|
||||
def init(self, train_dataset=None, valid_dataset=None):
|
||||
"""
|
||||
Initializes compute graphs and data graphs with sink mode.
|
||||
|
||||
Note:
|
||||
Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently.
|
||||
|
||||
Args:
|
||||
train_dataset (Dataset): A training dataset iterator. If define `train_dataset`, training graphs will be
|
||||
initialized. Default: None.
|
||||
valid_dataset (Dataset): A evaluating dataset iterator. If define `valid_dataset`, evaluation graphs will
|
||||
be initialized, and `metrics` in `Model` can not be None. Default: None.
|
||||
|
||||
Examples:
|
||||
>>> train_dataset = get_train_dataset()
|
||||
>>> valid_dataset = get_valid_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'})
|
||||
>>> model.init(train_dataset, valid_dataset)
|
||||
>>> model.train(2, train_dataset)
|
||||
>>> model.eval(valid_dataset)
|
||||
"""
|
||||
if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend":
|
||||
raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.')
|
||||
|
||||
if not train_dataset and not valid_dataset:
|
||||
raise ValueError('Both train_dataset and valid_dataset can not be None or empty.')
|
||||
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
|
||||
if train_dataset:
|
||||
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
||||
self._train_network.set_train()
|
||||
self._train_network.phase = 'train'
|
||||
|
||||
if self._parameter_broadcast:
|
||||
self._train_network.set_broadcast_flag()
|
||||
iter_first_order = self._frequency - 1
|
||||
iter_second_order = 1
|
||||
train_dataset.__loop_size__ = iter_second_order
|
||||
train_dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=True,
|
||||
iter_first_order=iter_first_order)
|
||||
self._train_network = train_network
|
||||
switch_branch_one = True
|
||||
index = 0
|
||||
for inputs in train_dataset_helper:
|
||||
if switch_branch_one:
|
||||
self._train_network.add_flags_recursive(thor=True)
|
||||
self._train_network.phase = 'train0'
|
||||
else:
|
||||
self._train_network.add_flags_recursive(thor=False)
|
||||
self._train_network.phase = 'train1'
|
||||
if not self._has_do_dataset_init:
|
||||
_exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset')
|
||||
self._has_do_dataset_init = True
|
||||
switch_branch_one = not switch_branch_one
|
||||
self._train_network.compile(*inputs)
|
||||
if index >= 1:
|
||||
break
|
||||
index += 1
|
||||
|
||||
if valid_dataset:
|
||||
if not self._metric_fns:
|
||||
raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.')
|
||||
|
||||
self._eval_network.set_train(False)
|
||||
self._eval_network.phase = 'eval'
|
||||
valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=True)
|
||||
self._eval_network = eval_network
|
||||
for inputs in valid_dataset_helper:
|
||||
self._eval_network.compile(*inputs)
|
||||
break
|
||||
|
||||
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
Training.
|
||||
|
||||
Args:
|
||||
epoch (int): Total number of iterations on the data.
|
||||
train_dataset (Dataset): A training dataset iterator. If there is no
|
||||
loss_fn, a tuple with multiply data (data1, data2, data3, ...) will be
|
||||
returned and passed to the network. Otherwise, a tuple (data, label) will
|
||||
be returned, and the data and label are passed to the network and loss
|
||||
function respectively.
|
||||
callbacks (list): List of callback object. Callbacks which should be executed while training. Default: None.
|
||||
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True.
|
||||
Configure pynative mode, the training process will be performed with
|
||||
dataset not sink.
|
||||
"""
|
||||
epoch = check_int_positive(epoch)
|
||||
self._train_network.set_train()
|
||||
|
||||
if self._parameter_broadcast:
|
||||
self._train_network.set_broadcast_flag()
|
||||
|
||||
# build callback list
|
||||
list_callback = _build_callbacks(callbacks)
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.train_network = self._train_network
|
||||
cb_params.epoch_num = epoch
|
||||
cb_params.batch_num = train_dataset.get_dataset_size()
|
||||
cb_params.mode = "train"
|
||||
cb_params.loss_fn = self._loss_fn
|
||||
cb_params.optimizer = self._optimizer
|
||||
cb_params.parallel_mode = self._parallel_mode
|
||||
cb_params.device_number = self._device_number
|
||||
cb_params.train_dataset = train_dataset
|
||||
cb_params.list_callback = list_callback
|
||||
|
||||
if dataset_sink_mode:
|
||||
if context.get_context("mode") == context.PYNATIVE_MODE:
|
||||
logger.warning("The pynative mode cannot support dataset sink mode currently."
|
||||
"So the training process will be performed with dataset not sink.")
|
||||
self._train_process(epoch, train_dataset, list_callback, cb_params)
|
||||
else:
|
||||
self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params)
|
||||
else:
|
||||
self._train_process(epoch, train_dataset, list_callback, cb_params)
|
||||
|
||||
def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
Training process. The data would be passed to network through dataset channel.
|
||||
|
||||
Args:
|
||||
epoch (int): Total number of iterations on the data.
|
||||
train_dataset (Dataset): A training dataset iterator. If there is no
|
||||
loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be
|
||||
returned and passed to the network. Otherwise, a tuple (data, label) should
|
||||
be returned, and the data and label are passed to the network and loss
|
||||
function respectively.
|
||||
list_callback (_ListCallback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
"""
|
||||
iter_first_order = self._frequency - 1
|
||||
iter_second_order = 1
|
||||
train_dataset.__loop_size__ = iter_second_order
|
||||
dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=True,
|
||||
iter_first_order=iter_first_order)
|
||||
self._train_network = train_network
|
||||
cb_params.train_network = self._train_network
|
||||
cb_params.cur_step_num = 0
|
||||
|
||||
loop_size = dataset_helper.loop_size()
|
||||
run_context = RunContext(cb_params)
|
||||
list_callback.begin(run_context)
|
||||
|
||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||
should_stop = False
|
||||
switch_branch_one = True
|
||||
for i in range(epoch):
|
||||
cb_params.cur_epoch_num = i + 1
|
||||
list_callback.epoch_begin(run_context)
|
||||
|
||||
# for data sink dataset_helper only iter once, other wise iter epoch_size times.
|
||||
for inputs in dataset_helper:
|
||||
list_callback.step_begin(run_context)
|
||||
if switch_branch_one:
|
||||
cb_params.cur_step_num += loop_size
|
||||
self._train_network.add_flags_recursive(thor=True)
|
||||
self._train_network.phase = 'train0'
|
||||
else:
|
||||
cb_params.cur_step_num += iter_first_order
|
||||
self._train_network.add_flags_recursive(thor=False)
|
||||
self._train_network.phase = 'train1'
|
||||
if not self._has_do_dataset_init:
|
||||
_exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset')
|
||||
self._has_do_dataset_init = True
|
||||
switch_branch_one = not switch_branch_one
|
||||
outputs = self._train_network(*inputs)
|
||||
cb_params.net_outputs = outputs
|
||||
list_callback.step_end(run_context)
|
||||
|
||||
list_callback.epoch_end(run_context)
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
list_callback.end(run_context)
|
||||
|
||||
def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
Training process. The data would be passed to network directly.
|
||||
|
||||
Args:
|
||||
epoch (int): Total number of iterations on the data.
|
||||
train_dataset (Dataset): A training dataset iterator. If there is no
|
||||
loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be
|
||||
returned and passed to the network. Otherwise, a tuple (data, label) should
|
||||
be returned, and the data and label are passed to the network and loss
|
||||
function respectively.
|
||||
list_callback (_ListCallback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
"""
|
||||
dataset_helper, _ = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=False)
|
||||
cb_params.cur_step_num = 0
|
||||
run_context = RunContext(cb_params)
|
||||
list_callback.begin(run_context)
|
||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||
should_stop = False
|
||||
|
||||
for i in range(epoch):
|
||||
cb_params.cur_epoch_num = i + 1
|
||||
|
||||
list_callback.epoch_begin(run_context)
|
||||
|
||||
for next_element in dataset_helper:
|
||||
len_element = len(next_element)
|
||||
if self._loss_fn and len_element != 2:
|
||||
raise ValueError("when loss_fn is not None, train_dataset should"
|
||||
"return two elements, but got {}".format(len_element))
|
||||
cb_params.cur_step_num += 1
|
||||
list_callback.step_begin(run_context)
|
||||
|
||||
overflow = False
|
||||
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
|
||||
scaling_sens = self._get_scaling_sens()
|
||||
next_element = tuple(next_element) + (Tensor(scaling_sens, mstype.float32),)
|
||||
|
||||
outputs = self._train_network(*next_element)
|
||||
cb_params.net_outputs = outputs
|
||||
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
|
||||
_, overflow, _ = outputs
|
||||
overflow = np.all(overflow.asnumpy())
|
||||
self._loss_scale_manager.update_loss_scale(overflow)
|
||||
|
||||
list_callback.step_end(run_context)
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
train_dataset.reset()
|
||||
|
||||
list_callback.epoch_end(run_context)
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
list_callback.end(run_context)
|
||||
|
||||
def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
Training API where the iteration is controlled by python front-end.
|
||||
|
||||
When setting pynative mode, the training process will be performed with dataset not sink.
|
||||
|
||||
Note:
|
||||
CPU is not supported when dataset_sink_mode is true.
|
||||
If dataset_sink_mode is True, epoch of training should be equal to the count of repeat
|
||||
operation in dataset processing. Otherwise, errors could occur since the amount of data
|
||||
is not the amount training requires.
|
||||
If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features
|
||||
of data will be transferred one by one. The limitation of data transmission per time is 256M.
|
||||
|
||||
Args:
|
||||
epoch (int): Total number of iterations on the data.
|
||||
train_dataset (Dataset): A training dataset iterator. If there is no
|
||||
loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be
|
||||
returned and passed to the network. Otherwise, a tuple (data, label) should
|
||||
be returned, and the data and label are passed to the network and loss
|
||||
function respectively.
|
||||
callbacks (list): List of callback object. Callbacks which should be excuted while training. Default: None.
|
||||
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True.
|
||||
Configure pynative mode, the training process will be performed with
|
||||
dataset not sink.
|
||||
|
||||
|
||||
Examples:
|
||||
>>> dataset = get_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> loss_scale_manager = FixedLossScaleManager()
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager)
|
||||
>>> model.train(2, dataset)
|
||||
"""
|
||||
repeat_count = train_dataset.get_repeat_count()
|
||||
if epoch != repeat_count and dataset_sink_mode is True:
|
||||
logger.warning(f"The epoch_size {epoch} is not the same with dataset repeat_count {repeat_count}")
|
||||
check_bool(dataset_sink_mode)
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
||||
|
||||
self._train(epoch,
|
||||
train_dataset,
|
||||
callbacks=callbacks,
|
||||
dataset_sink_mode=dataset_sink_mode)
|
||||
|
||||
def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
Evaluation. The data would be passed to network through dataset channel.
|
||||
|
||||
Args:
|
||||
valid_dataset (Dataset): Dataset to evaluate the model.
|
||||
list_callback (ListCallback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
|
||||
Returns:
|
||||
Dict, returns the loss value & metrics values for the model in test mode.
|
||||
"""
|
||||
run_context = RunContext(cb_params)
|
||||
|
||||
dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=True)
|
||||
self._eval_network = eval_network
|
||||
cb_params.eval_network = self._eval_network
|
||||
list_callback.begin(run_context)
|
||||
|
||||
for inputs in dataset_helper:
|
||||
cb_params.cur_step_num += 1
|
||||
list_callback.step_begin(run_context)
|
||||
|
||||
outputs = self._eval_network(*inputs)
|
||||
|
||||
cb_params.net_outputs = outputs
|
||||
list_callback.step_end(run_context)
|
||||
self._update_metrics(outputs)
|
||||
|
||||
metrics = self._get_metrics()
|
||||
cb_params.metrics = metrics
|
||||
list_callback.end(run_context)
|
||||
|
||||
return metrics
|
||||
|
||||
def _eval_process(self, valid_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
Evaluation. The data would be passed to network directly.
|
||||
|
||||
Args:
|
||||
valid_dataset (Dataset): Dataset to evaluate the model.
|
||||
list_callback (ListCallback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
|
||||
Returns:
|
||||
Dict, returns the loss value & metrics values for the model in test mode.
|
||||
"""
|
||||
run_context = RunContext(cb_params)
|
||||
list_callback.begin(run_context)
|
||||
|
||||
dataset_helper, _ = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=False)
|
||||
for next_element in dataset_helper:
|
||||
cb_params.cur_step_num += 1
|
||||
list_callback.step_begin(run_context)
|
||||
outputs = self._eval_network(*next_element)
|
||||
cb_params.net_outputs = outputs
|
||||
list_callback.step_end(run_context)
|
||||
self._update_metrics(outputs)
|
||||
|
||||
metrics = self._get_metrics()
|
||||
cb_params.metrics = metrics
|
||||
list_callback.end(run_context)
|
||||
return metrics
|
||||
|
||||
def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
Evaluation API where the iteration is controlled by python front-end.
|
||||
|
||||
Configure to pynative mode, the evaluation will be performed with dataset non-sink mode.
|
||||
|
||||
Note:
|
||||
CPU is not supported when dataset_sink_mode is true.
|
||||
If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features
|
||||
of data will be transferred one by one. The limitation of data transmission per time is 256M.
|
||||
|
||||
Args:
|
||||
valid_dataset (Dataset): Dataset to evaluate the model.
|
||||
callbacks (list): List of callback object. Callbacks which should be excuted
|
||||
while training. Default: None.
|
||||
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True.
|
||||
|
||||
Returns:
|
||||
Dict, returns the loss value & metrics values for the model in test mode.
|
||||
|
||||
Examples:
|
||||
>>> dataset = get_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
||||
>>> model.eval(dataset)
|
||||
"""
|
||||
check_bool(dataset_sink_mode)
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
if not self._metric_fns:
|
||||
raise ValueError("metric fn can not be None or empty.")
|
||||
|
||||
list_callback = _build_callbacks(callbacks)
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.eval_network = self._eval_network
|
||||
cb_params.valid_dataset = valid_dataset
|
||||
cb_params.batch_num = valid_dataset.get_dataset_size()
|
||||
cb_params.mode = "eval"
|
||||
cb_params.cur_step_num = 0
|
||||
|
||||
self._eval_network.set_train(mode=False)
|
||||
self._eval_network.phase = 'eval'
|
||||
|
||||
self._clear_metrics()
|
||||
|
||||
if dataset_sink_mode:
|
||||
return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params)
|
||||
return self._eval_process(valid_dataset, list_callback, cb_params)
|
||||
|
||||
def predict(self, *predict_data):
|
||||
"""
|
||||
Generates output predictions for the input samples.
|
||||
|
||||
Data could be single tensor, or list of tensor, tuple of tensor.
|
||||
|
||||
Note:
|
||||
Batch data should be put together in one tensor.
|
||||
|
||||
Args:
|
||||
predict_data (Tensor): Tensor of predict data. can be array, list or tuple.
|
||||
|
||||
Returns:
|
||||
Tensor, array(s) of predictions.
|
||||
|
||||
Examples:
|
||||
>>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32)
|
||||
>>> model = Model(Net())
|
||||
>>> model.predict(input_data)
|
||||
"""
|
||||
self._predict_network.set_train(False)
|
||||
check_input_data(*predict_data, data_class=Tensor)
|
||||
result = self._predict_network(*predict_data)
|
||||
|
||||
check_output_data(result)
|
||||
return result
|
||||
|
||||
|
||||
__all__ = ["Model"]
|
|
@ -0,0 +1,359 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""ResNet."""
|
||||
import math
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
from .thor_layer import Conv2d_Thor, Dense_Thor
|
||||
|
||||
|
||||
def calculate_gain(nonlinearity, param=None):
|
||||
"""calculate_gain"""
|
||||
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
||||
res = 0
|
||||
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
||||
res = 1
|
||||
elif nonlinearity == 'tanh':
|
||||
res = 5.0 / 3
|
||||
elif nonlinearity == 'relu':
|
||||
res = math.sqrt(2.0)
|
||||
elif nonlinearity == 'leaky_relu':
|
||||
if param is None:
|
||||
negative_slope = 0.01
|
||||
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
|
||||
# True/False are instances of int, hence check above
|
||||
negative_slope = param
|
||||
else:
|
||||
raise ValueError("negative_slope {} not a valid number".format(param))
|
||||
res = math.sqrt(2.0 / (1 + negative_slope ** 2))
|
||||
else:
|
||||
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
||||
return res
|
||||
|
||||
|
||||
def _calculate_fan_in_and_fan_out(tensor):
|
||||
"""_calculate_fan_in_and_fan_out"""
|
||||
dimensions = len(tensor)
|
||||
if dimensions < 2:
|
||||
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
|
||||
if dimensions == 2: # Linear
|
||||
fan_in = tensor[1]
|
||||
fan_out = tensor[0]
|
||||
else:
|
||||
num_input_fmaps = tensor[1]
|
||||
num_output_fmaps = tensor[0]
|
||||
receptive_field_size = 1
|
||||
if dimensions > 2:
|
||||
receptive_field_size = tensor[2] * tensor[3]
|
||||
fan_in = num_input_fmaps * receptive_field_size
|
||||
fan_out = num_output_fmaps * receptive_field_size
|
||||
return fan_in, fan_out
|
||||
|
||||
|
||||
def _calculate_correct_fan(tensor, mode):
|
||||
mode = mode.lower()
|
||||
valid_modes = ['fan_in', 'fan_out']
|
||||
if mode not in valid_modes:
|
||||
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
|
||||
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
||||
return fan_in if mode == 'fan_in' else fan_out
|
||||
|
||||
|
||||
def kaiming_normal(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||
fan = _calculate_correct_fan(inputs_shape, mode)
|
||||
gain = calculate_gain(nonlinearity, a)
|
||||
std = gain / math.sqrt(fan)
|
||||
return np.random.normal(0, std, size=inputs_shape).astype(np.float32)
|
||||
|
||||
|
||||
def kaiming_uniform(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||
fan = _calculate_correct_fan(inputs_shape, mode)
|
||||
gain = calculate_gain(nonlinearity, a)
|
||||
std = gain / math.sqrt(fan)
|
||||
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
||||
return np.random.uniform(-bound, bound, size=inputs_shape).astype(np.float32)
|
||||
|
||||
|
||||
def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||
weight_shape = (out_channel, in_channel, 3, 3)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
return Conv2d_Thor(in_channel, out_channel,
|
||||
kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||
weight_shape = (out_channel, in_channel, 1, 1)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
return Conv2d_Thor(in_channel, out_channel,
|
||||
kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
def _conv7x7(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||
weight_shape = (out_channel, in_channel, 7, 7)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
return Conv2d_Thor(in_channel, out_channel,
|
||||
kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
def _bn(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
||||
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
def _bn_last(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
||||
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
def _fc(in_channel, out_channel, damping, loss_scale, frequency):
|
||||
weight_shape = (out_channel, in_channel)
|
||||
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5)))
|
||||
return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight,
|
||||
bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Cell):
|
||||
"""
|
||||
ResNet V1 residual block definition.
|
||||
|
||||
Args:
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> ResidualBlock(3, 256, stride=2)
|
||||
"""
|
||||
expansion = 4
|
||||
|
||||
def __init__(self,
|
||||
in_channel,
|
||||
out_channel,
|
||||
stride=1,
|
||||
damping=0.03,
|
||||
loss_scale=1,
|
||||
frequency=278):
|
||||
super(ResidualBlock, self).__init__()
|
||||
|
||||
channel = out_channel // self.expansion
|
||||
self.conv1 = _conv1x1(in_channel, channel, stride=1, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.bn1 = _bn(channel)
|
||||
|
||||
self.conv2 = _conv3x3(channel, channel, stride=stride, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.bn2 = _bn(channel)
|
||||
|
||||
self.conv3 = _conv1x1(channel, out_channel, stride=1, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.bn3 = _bn_last(out_channel)
|
||||
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
self.down_sample = False
|
||||
|
||||
if stride != 1 or in_channel != out_channel:
|
||||
self.down_sample = True
|
||||
self.down_sample_layer = None
|
||||
|
||||
if self.down_sample:
|
||||
self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride,
|
||||
damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency),
|
||||
_bn(out_channel)])
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
def construct(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.down_sample:
|
||||
identity = self.down_sample_layer(identity)
|
||||
|
||||
out = self.add(out, identity)
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Cell):
|
||||
"""
|
||||
ResNet architecture.
|
||||
|
||||
Args:
|
||||
block (Cell): Block for network.
|
||||
layer_nums (list): Numbers of block in different layers.
|
||||
in_channels (list): Input channel in each layer.
|
||||
out_channels (list): Output channel in each layer.
|
||||
strides (list): Stride size in each layer.
|
||||
num_classes (int): The number of classes that the training images are belonging to.
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> ResNet(ResidualBlock,
|
||||
>>> [3, 4, 6, 3],
|
||||
>>> [64, 256, 512, 1024],
|
||||
>>> [256, 512, 1024, 2048],
|
||||
>>> [1, 2, 2, 2],
|
||||
>>> 10)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
block,
|
||||
layer_nums,
|
||||
in_channels,
|
||||
out_channels,
|
||||
strides,
|
||||
num_classes,
|
||||
damping,
|
||||
loss_scale,
|
||||
frequency):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
|
||||
raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
|
||||
|
||||
self.conv1 = _conv7x7(3, 64, stride=2, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
self.bn1 = _bn(64)
|
||||
self.relu = P.ReLU()
|
||||
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||
|
||||
self.layer1 = self._make_layer(block,
|
||||
layer_nums[0],
|
||||
in_channel=in_channels[0],
|
||||
out_channel=out_channels[0],
|
||||
stride=strides[0],
|
||||
damping=damping,
|
||||
loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.layer2 = self._make_layer(block,
|
||||
layer_nums[1],
|
||||
in_channel=in_channels[1],
|
||||
out_channel=out_channels[1],
|
||||
stride=strides[1],
|
||||
damping=damping,
|
||||
loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.layer3 = self._make_layer(block,
|
||||
layer_nums[2],
|
||||
in_channel=in_channels[2],
|
||||
out_channel=out_channels[2],
|
||||
stride=strides[2], damping=damping,
|
||||
loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.layer4 = self._make_layer(block,
|
||||
layer_nums[3],
|
||||
in_channel=in_channels[3],
|
||||
out_channel=out_channels[3],
|
||||
stride=strides[3],
|
||||
damping=damping,
|
||||
loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
def _make_layer(self, block, layer_num, in_channel, out_channel, stride,
|
||||
damping, loss_scale, frequency):
|
||||
"""
|
||||
Make stage network of ResNet.
|
||||
|
||||
Args:
|
||||
block (Cell): Resnet block.
|
||||
layer_num (int): Layer number.
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer.
|
||||
|
||||
Returns:
|
||||
SequentialCell, the output layer.
|
||||
|
||||
Examples:
|
||||
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
|
||||
"""
|
||||
layers = []
|
||||
|
||||
resnet_block = block(in_channel, out_channel, stride=stride,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
layers.append(resnet_block)
|
||||
|
||||
for _ in range(1, layer_num):
|
||||
resnet_block = block(out_channel, out_channel, stride=1,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
layers.append(resnet_block)
|
||||
|
||||
return nn.SequentialCell(layers)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
c1, _ = self.maxpool(x)
|
||||
|
||||
c2 = self.layer1(c1)
|
||||
c3 = self.layer2(c2)
|
||||
c4 = self.layer3(c3)
|
||||
c5 = self.layer4(c4)
|
||||
|
||||
out = self.mean(c5, (2, 3))
|
||||
out = self.flatten(out)
|
||||
out = self.end_point(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278):
|
||||
"""
|
||||
Get ResNet50 neural network.
|
||||
|
||||
Args:
|
||||
class_num (int): Class number.
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of ResNet50 neural network.
|
||||
|
||||
Examples:
|
||||
>>> net = resnet50(10)
|
||||
"""
|
||||
return ResNet(ResidualBlock,
|
||||
[3, 4, 6, 3],
|
||||
[64, 256, 512, 1024],
|
||||
[256, 512, 1024, 2048],
|
||||
[1, 2, 2, 2],
|
||||
class_num,
|
||||
damping,
|
||||
loss_scale,
|
||||
frequency)
|
|
@ -0,0 +1,201 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""momentum"""
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.parameter import ParameterTuple
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.optim.optimizer import Optimizer
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.parallel._utils import _get_device_num, _get_mirror_mean
|
||||
|
||||
from .grad_reducer_thor import DistributedGradReducerThor
|
||||
|
||||
momentum_opt = C.MultitypeFuncGraph("momentum_opt")
|
||||
|
||||
|
||||
@momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
|
||||
def _tensor_run_opt_ext(opt, learning_rate, momentum, gradient, weight, moment):
|
||||
"""Apply momentum optimizer to the weight parameter using Tensor."""
|
||||
success = True
|
||||
success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum))
|
||||
return success
|
||||
|
||||
|
||||
op_add = P.AddN()
|
||||
apply_decay = C.MultitypeFuncGraph("apply_decay")
|
||||
|
||||
|
||||
@apply_decay.register("Number", "Bool", "Tensor", "Tensor")
|
||||
def _tensor_apply_decay(weight_decay, if_apply, weight, gradient):
|
||||
"""Get grad with weight_decay."""
|
||||
if if_apply:
|
||||
return op_add((weight * weight_decay, gradient))
|
||||
return gradient
|
||||
|
||||
|
||||
class THOR(Optimizer):
|
||||
"""THOR"""
|
||||
|
||||
def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0,
|
||||
loss_scale=1.0,
|
||||
decay_filter=lambda x: x.name not in []):
|
||||
super(THOR, self).__init__(learning_rate, params, weight_decay, loss_scale)
|
||||
if isinstance(momentum, float) and momentum < 0.0:
|
||||
raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum))
|
||||
self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
|
||||
self.params = self.parameters
|
||||
self.moments = self.params.clone(prefix="moments", init='zeros')
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.opt = P.ApplyMomentum()
|
||||
self.matrix_A = ParameterTuple(matrix_A)
|
||||
self.matrix_G = ParameterTuple(matrix_G)
|
||||
self.A_inv_max = ParameterTuple(A_inv_max)
|
||||
self.G_inv_max = ParameterTuple(G_inv_max)
|
||||
self.cube_matmul_left = P.CusMatMulCubeFraczLeftCast()
|
||||
self.cube_matmul_left_fc = P.CusMatMulCubeDenseLeft()
|
||||
self.cube_matmul_right_fc = P.CusMatMulCubeDenseRight()
|
||||
self.cube_matmul_right_mul = P.CusMatMulCubeFraczRightMul()
|
||||
self.transpose = P.Transpose()
|
||||
self.shape = P.Shape()
|
||||
self.reshape = P.Reshape()
|
||||
self.mul = P.Mul()
|
||||
self.weight_idx = []
|
||||
for i in range(len(self.params)):
|
||||
if "conv" in self.params[i].name or "end_point" in self.params[i].name:
|
||||
self.weight_idx.append(i)
|
||||
self.weight_idx.append(len(self.params))
|
||||
self.feature_map = [1.0 / 12544, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136,
|
||||
1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136,
|
||||
1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784,
|
||||
1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784,
|
||||
1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196,
|
||||
1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196,
|
||||
1.0 / 196, 1.0 / 196, 1.0 / 196,
|
||||
1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49,
|
||||
1.0]
|
||||
mean = _get_mirror_mean()
|
||||
degree = _get_device_num()
|
||||
self.grad_reducer_Amax = DistributedGradReducerThor(self.parameters, 2, mean, degree)
|
||||
self.grad_reducer_Gmax = DistributedGradReducerThor(self.parameters, 5, mean, degree)
|
||||
self.grad_reducer_A = DistributedGradReducerThor(self.parameters, 3, mean, degree)
|
||||
self.grad_reducer_G = DistributedGradReducerThor(self.parameters, 4, mean, degree)
|
||||
self.matrix_A_inv = ()
|
||||
self.matrix_G_inv = ()
|
||||
self.matrix_max_inv = ()
|
||||
|
||||
for i in range(54):
|
||||
self.matrix_max_inv = self.matrix_max_inv + (
|
||||
Parameter(initializer(1, [1], mstype.float32), name="matrix_max" + str(i), requires_grad=False),)
|
||||
self.log = P.Log()
|
||||
self.exp = P.Exp()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.matrix_max_inv = ParameterTuple(self.matrix_max_inv)
|
||||
self.assign = P.Assign()
|
||||
self.cast = P.Cast()
|
||||
self.thor = True
|
||||
self.weight_decay = weight_decay * loss_scale
|
||||
self.decay_flags = tuple(decay_filter(x) for x in self.parameters)
|
||||
|
||||
def construct(self, gradients):
|
||||
params = self.params
|
||||
moments = self.moments
|
||||
if self.thor:
|
||||
matrix_A_allreduce = ()
|
||||
matrix_G_allreduce = ()
|
||||
matrix_A_max_allreduce = ()
|
||||
matrix_G_max_allreduce = ()
|
||||
for i in range(54):
|
||||
g = gradients[i * 3]
|
||||
matrix_A = self.matrix_A[i]
|
||||
matrix_G = self.matrix_G[i]
|
||||
A_max = self.A_inv_max[i]
|
||||
G_max = self.G_inv_max[i]
|
||||
matrix_A = F.depend(matrix_A, g)
|
||||
matrix_G = F.depend(matrix_G, g)
|
||||
A_max = F.depend(A_max, g)
|
||||
G_max = F.depend(G_max, g)
|
||||
matrix_A_allreduce = matrix_A_allreduce + (matrix_A,)
|
||||
matrix_G_allreduce = matrix_G_allreduce + (matrix_G,)
|
||||
matrix_A_max_allreduce = matrix_A_max_allreduce + (A_max,)
|
||||
matrix_G_max_allreduce = matrix_G_max_allreduce + (G_max,)
|
||||
matrix_A_allreduce = self.grad_reducer_A(matrix_A_allreduce)
|
||||
matrix_G_allreduce = self.grad_reducer_G(matrix_G_allreduce)
|
||||
matrix_A_max_allreduce = self.grad_reducer_Amax(matrix_A_max_allreduce)
|
||||
matrix_G_max_allreduce = self.grad_reducer_Gmax(matrix_G_max_allreduce)
|
||||
new_grads = ()
|
||||
for i in range(54):
|
||||
g = gradients[i * 3]
|
||||
temp_a = matrix_A_allreduce[i]
|
||||
temp_g = matrix_G_allreduce[i]
|
||||
temp_a = self.cast(temp_a, mstype.float32)
|
||||
temp_g = self.cast(temp_g, mstype.float32)
|
||||
matrix_A_inv_max = self.log(matrix_A_max_allreduce[i])
|
||||
matrix_A_inv_max = self.mul(matrix_A_inv_max, -1)
|
||||
matrix_A_inv_max = self.exp(matrix_A_inv_max)
|
||||
temp_a = self.mul(temp_a, matrix_A_inv_max)
|
||||
matrix_G_inv_max = self.log(matrix_G_max_allreduce[i])
|
||||
matrix_G_inv_max = self.mul(matrix_G_inv_max, -1)
|
||||
matrix_G_inv_max = self.exp(matrix_G_inv_max)
|
||||
temp_g = self.mul(temp_g, matrix_G_inv_max)
|
||||
temp_max = self.mul(matrix_A_max_allreduce[i], matrix_G_max_allreduce[i])
|
||||
temp_max = self.mul(temp_max, self.feature_map[i])
|
||||
temp_a = self.cast(temp_a, mstype.float16)
|
||||
temp_g = self.cast(temp_g, mstype.float16)
|
||||
if i == 53:
|
||||
g = self.cube_matmul_left_fc(temp_g, g)
|
||||
g = self.cube_matmul_right_fc(g, temp_a, temp_max)
|
||||
else:
|
||||
g = self.cube_matmul_left(temp_g, g)
|
||||
g = self.cube_matmul_right_mul(g, temp_a, temp_max)
|
||||
fake_A = self.assign(self.matrix_A[i], temp_a)
|
||||
fake_G = self.assign(self.matrix_G[i], temp_g)
|
||||
fake_max = self.assign(self.matrix_max_inv[i], temp_max)
|
||||
g = F.depend(g, fake_A)
|
||||
g = F.depend(g, fake_G)
|
||||
g = F.depend(g, fake_max)
|
||||
if i == 53:
|
||||
new_grads = new_grads + (g,)
|
||||
else:
|
||||
new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2])
|
||||
gradients = new_grads
|
||||
else:
|
||||
new_grads = ()
|
||||
for i in range(54):
|
||||
g = gradients[i * 3]
|
||||
matrix_A = self.matrix_A[i]
|
||||
matrix_G = self.matrix_G[i]
|
||||
matrix_max = self.matrix_max_inv[i]
|
||||
matrix_A = F.depend(matrix_A, g)
|
||||
matrix_G = F.depend(matrix_G, g)
|
||||
matrix_max = F.depend(matrix_max, g)
|
||||
if i == 53:
|
||||
g = self.cube_matmul_left_fc(matrix_G, g)
|
||||
g = self.cube_matmul_right_fc(g, matrix_A, matrix_max)
|
||||
new_grads = new_grads + (g,)
|
||||
else:
|
||||
g = self.cube_matmul_left(matrix_G, g)
|
||||
g = self.cube_matmul_right_mul(g, matrix_A, matrix_max)
|
||||
new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2])
|
||||
gradients = new_grads
|
||||
|
||||
if self.weight_decay > 0:
|
||||
gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags,
|
||||
params, gradients)
|
||||
gradients = self.scale_grad(gradients)
|
||||
lr = self.get_lr()
|
||||
success = self.hyper_map(F.partial(momentum_opt, self.opt, lr, self.momentum), gradients, params, moments)
|
||||
return success
|
|
@ -0,0 +1,481 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""thor_layer"""
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore._checkparam import check_bool, twice, check_int_positive
|
||||
from mindspore._extends import cell_attr_register
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.cell import Cell
|
||||
from mindspore.nn.layer.activation import get_activation
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
C0 = 16
|
||||
|
||||
|
||||
def caculate_device_shape(matrix_dim, channel, is_A):
|
||||
ll = (0)
|
||||
if is_A:
|
||||
if channel // C0 == 0:
|
||||
matrix_dim = (matrix_dim / channel) * C0
|
||||
ll = (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim)
|
||||
else:
|
||||
ll = (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim)
|
||||
return ll
|
||||
|
||||
|
||||
class _Conv(Cell):
|
||||
r"""Applies a N-D convolution over an input signal composed of several input
|
||||
planes.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
pad_mode,
|
||||
padding,
|
||||
dilation,
|
||||
group,
|
||||
data_format,
|
||||
has_bias,
|
||||
weight_init,
|
||||
bias_init,
|
||||
):
|
||||
super(_Conv, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.pad_mode = pad_mode
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.group = group
|
||||
self.data_format = data_format
|
||||
self.has_bias = has_bias
|
||||
if not (isinstance(in_channels, int) and in_channels > 0):
|
||||
raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op passed '
|
||||
+ str(in_channels) + ', should be a int and greater than 0.')
|
||||
if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \
|
||||
(not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
|
||||
kernel_size[0] < 1 or kernel_size[1] < 1:
|
||||
raise ValueError('Attr \'kernel_size\' of \'Conv2D\' Op passed '
|
||||
+ str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.')
|
||||
if in_channels % group != 0:
|
||||
raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op must be divisible by '
|
||||
'attr \'group\' of \'Conv2D\' Op.')
|
||||
if out_channels % group != 0:
|
||||
raise ValueError('Attr \'out_channels\' of \'Conv2D\' Op must be divisible by '
|
||||
'attr \'group\' of \'Conv2D\' Op.')
|
||||
|
||||
self.weight = Parameter(initializer(
|
||||
weight_init, [out_channels, in_channels // group, *kernel_size]), name='weight')
|
||||
|
||||
if check_bool(has_bias):
|
||||
self.bias = Parameter(_initializer(
|
||||
bias_init, [out_channels]), name='bias')
|
||||
else:
|
||||
if bias_init != 'zeros':
|
||||
logger.warning("Value of 'has_bias' is False, value of 'bias_init' will be ignored.")
|
||||
self.bias = None
|
||||
|
||||
def construct(self, *inputs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class Conv2d_Thor(_Conv):
|
||||
"""Conv2d_Thor"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
pad_mode='same',
|
||||
padding=0,
|
||||
dilation=1,
|
||||
group=1,
|
||||
data_format='NCHW',
|
||||
has_bias=False,
|
||||
weight_init='normal',
|
||||
damping=0.03,
|
||||
loss_scale=1,
|
||||
frequency=278,
|
||||
bias_init='zeros'):
|
||||
self.thor = True
|
||||
ksizes = (1, kernel_size, kernel_size, 1)
|
||||
self.hw = kernel_size * kernel_size
|
||||
strides = (1, stride, stride, 1)
|
||||
kernel_size = twice(kernel_size)
|
||||
super(Conv2d_Thor, self).__init__(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
pad_mode,
|
||||
padding,
|
||||
dilation,
|
||||
group,
|
||||
data_format,
|
||||
has_bias,
|
||||
weight_init,
|
||||
bias_init,
|
||||
)
|
||||
self.conv2d = P.Conv2D(out_channel=self.out_channels,
|
||||
kernel_size=self.kernel_size,
|
||||
mode=1,
|
||||
pad_mode=self.pad_mode,
|
||||
pad=self.padding,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
group=self.group
|
||||
)
|
||||
|
||||
self.img2col = P.CusImg2Col(ksizes=ksizes, strides=strides)
|
||||
self.cube_matmul = P.CusMatMulCube(transpose_a=True)
|
||||
self.matrix_combine = P.CusMatrixCombine()
|
||||
self.cholesky = P.CusCholeskyTrsm()
|
||||
self.transpose02314 = P.CusTranspose02314()
|
||||
self.matrix_A_dim = self.in_channels * self.kernel_size[0] * self.kernel_size[1]
|
||||
self.matrix_G_dim = self.out_channels
|
||||
self.matrix_A_device_shape, self.matrix_A_device_dim = caculate_device_shape(self.matrix_A_dim,
|
||||
self.in_channels, True)
|
||||
self.matrix_G_device_shape, self.matrix_G_device_dim = caculate_device_shape(self.matrix_G_dim,
|
||||
self.in_channels, False)
|
||||
self.matrix_A_device_temp_shape = (
|
||||
self.matrix_A_device_shape[0], self.matrix_A_device_shape[2], self.matrix_A_device_shape[1],
|
||||
self.matrix_A_device_shape[3])
|
||||
self.matrix_G_device_temp_shape = (
|
||||
self.matrix_G_device_shape[0], self.matrix_G_device_shape[2], self.matrix_G_device_shape[1],
|
||||
self.matrix_G_device_shape[3])
|
||||
self.matrix_A_inv = Parameter(
|
||||
Tensor(np.reshape(np.identity(self.matrix_A_device_dim).astype(np.float16), self.matrix_A_device_shape)),
|
||||
name='matrix_A_inv', requires_grad=False)
|
||||
self.A_inv_max = Parameter(initializer(0, [1], mstype.float32), name="A_inv_max", requires_grad=False)
|
||||
self.matrix_G_inv = Parameter(
|
||||
Tensor(np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape)),
|
||||
name="matrix_G_inv", requires_grad=False)
|
||||
|
||||
self.G_inv_max = Parameter(initializer(0, [1], mstype.float32), name="G_inv_max", requires_grad=False)
|
||||
self.fake_G = Tensor(
|
||||
np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape))
|
||||
|
||||
self.shape = P.Shape()
|
||||
self.reshape = P.Reshape()
|
||||
self.transpose = P.Transpose()
|
||||
self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False)
|
||||
self.mul = P.Mul()
|
||||
self.cast = P.Cast()
|
||||
self.damping = Tensor(damping)
|
||||
self.vector_matmul = P.CusBatchMatMul()
|
||||
self.diag_block_dim = 128
|
||||
self.channels_slice_flag = False
|
||||
if self.in_channels % C0 != 0:
|
||||
self.channels_slice_flag = True
|
||||
|
||||
self.padA_flag = False
|
||||
if (self.matrix_A_dim // self.diag_block_dim) * self.diag_block_dim != self.matrix_A_dim \
|
||||
and self.matrix_A_dim > self.diag_block_dim:
|
||||
self.padA_flag = True
|
||||
pad_dim = self.diag_block_dim - self.matrix_A_dim % self.diag_block_dim
|
||||
self.padA = P.Pad(((0, pad_dim), (0, pad_dim)))
|
||||
self.device_shape_pad_flag = False
|
||||
if self.matrix_A_dim != self.matrix_A_device_dim:
|
||||
self.device_shape_pad_flag = True
|
||||
self.device_shape_pad = P.Pad(((0, 0), (0, C0 - self.in_channels), (0, 0), (0, C0 - self.in_channels)))
|
||||
self.slice = P.Slice()
|
||||
self.gather = P.GatherV2()
|
||||
self.freq = Tensor(frequency, mstype.int32)
|
||||
self.loss_scale = Tensor(1 / loss_scale, mstype.float16)
|
||||
self.axis = 0
|
||||
|
||||
dampingA_dim = self.matrix_A_dim
|
||||
if (self.matrix_A_dim % self.diag_block_dim) != 0 and self.matrix_A_dim > self.diag_block_dim:
|
||||
dampingA_dim = (self.matrix_A_dim // self.diag_block_dim + 1) * self.diag_block_dim
|
||||
dampingG_dim = self.matrix_G_dim
|
||||
if (self.matrix_G_dim % self.diag_block_dim) != 0 and self.matrix_G_dim > self.diag_block_dim:
|
||||
dampingG_dim = (self.matrix_G_dim // self.diag_block_dim + 1) * self.diag_block_dim
|
||||
|
||||
self.dampingA = Tensor(np.identity(dampingA_dim), mstype.float32)
|
||||
self.dampingG = Tensor(np.identity(dampingG_dim), mstype.float32)
|
||||
self.fused_abs_max1 = P.CusFusedAbsMax1([self.matrix_A_dim, self.matrix_A_dim])
|
||||
self.fused_abs_max2 = P.CusFusedAbsMax1()
|
||||
self.log = P.Log()
|
||||
self.exp = P.Exp()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.getG = P.InsertGradientOf(self.save_gradient)
|
||||
|
||||
def save_gradient(self, dout):
|
||||
"""save_gradient"""
|
||||
out = dout
|
||||
dout = self.mul(dout, self.loss_scale)
|
||||
dout = self.mul(dout, 32.0)
|
||||
dout = self.transpose02314(dout)
|
||||
dout_shape = self.shape(dout)
|
||||
normalizer = dout_shape[0]
|
||||
|
||||
matrix_G = self.cube_matmul(dout, dout)
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_G = self.mul(matrix_G, 1.0 / normalizer)
|
||||
damping_step = self.gather(self.damping, self.cov_step, 0)
|
||||
self.cov_step = self.cov_step + self.freq
|
||||
damping_step = self.cast(damping_step, mstype.float32)
|
||||
damping = self.mul(damping_step, 32.0 / normalizer)
|
||||
damping = self.sqrt(damping)
|
||||
dampingG = self.cast(self.dampingG, mstype.float32)
|
||||
matrix_G = matrix_G + damping * dampingG
|
||||
|
||||
matrix_G_inv = self.cholesky(matrix_G)
|
||||
matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max)
|
||||
self.G_inv_max = matrix_G_inv_max
|
||||
matrix_G_inv = self.matrix_combine(matrix_G_inv)
|
||||
matrix_G_inv = self.reshape(matrix_G_inv, self.matrix_G_device_temp_shape)
|
||||
matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3))
|
||||
matrix_G = self.cast(matrix_G_inv, mstype.float16)
|
||||
self.matrix_G_inv = matrix_G
|
||||
return out
|
||||
|
||||
def construct(self, x):
|
||||
if self.thor:
|
||||
matrix_A = self.img2col(x)
|
||||
matrix_A_shape = self.shape(matrix_A)
|
||||
normalizer = matrix_A_shape[0]
|
||||
matrix_A = self.cube_matmul(matrix_A, matrix_A)
|
||||
|
||||
if self.channels_slice_flag:
|
||||
matrix_A = self.reshape(matrix_A, (self.hw, C0, self.hw, C0))
|
||||
matrix_A = self.slice(matrix_A, (0, 0, 0, 0), (self.hw, self.in_channels, self.hw, self.in_channels))
|
||||
matrix_A = self.reshape(matrix_A, (self.matrix_A_dim, self.matrix_A_dim))
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_A = self.mul(matrix_A, 1.0 / normalizer)
|
||||
if self.padA_flag:
|
||||
matrix_A = self.padA(matrix_A)
|
||||
damping_step = self.gather(self.damping, self.cov_step, self.axis)
|
||||
damping_step = self.cast(damping_step, mstype.float32)
|
||||
damping = self.mul(damping_step, 32.0 / normalizer)
|
||||
damping = self.sqrt(damping)
|
||||
damping_A = self.cast(self.dampingA, mstype.float32)
|
||||
matrix_A = matrix_A + damping * damping_A
|
||||
matrix_A_inv = self.cholesky(matrix_A)
|
||||
matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv)
|
||||
matrix_A_inv_max = self.fused_abs_max1(matrix_A_inv)
|
||||
matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv_max)
|
||||
self.A_inv_max = matrix_A_inv_max
|
||||
matrix_A_inv = self.matrix_combine(matrix_A_inv)
|
||||
matrix_A_inv = self.cast(matrix_A_inv, mstype.float16)
|
||||
if self.padA_flag:
|
||||
matrix_A_inv = self.slice(matrix_A_inv, (0, 0), (self.matrix_A_dim, self.matrix_A_dim))
|
||||
|
||||
if self.device_shape_pad_flag:
|
||||
matrix_A_inv = self.reshape(matrix_A_inv, (self.hw, self.in_channels, self.hw, self.in_channels))
|
||||
matrix_A_inv = self.device_shape_pad(matrix_A_inv)
|
||||
matrix_A_inv = self.reshape(matrix_A_inv, self.matrix_A_device_temp_shape)
|
||||
matrix_A_inv = self.transpose(matrix_A_inv, (2, 0, 1, 3))
|
||||
self.matrix_A_inv = matrix_A_inv
|
||||
self.matrix_G_inv = self.fake_G
|
||||
out = self.conv2d(x, self.weight)
|
||||
out = self.getG(out)
|
||||
else:
|
||||
out = self.conv2d(x, self.weight)
|
||||
|
||||
return out
|
||||
|
||||
def extra_repr(self):
|
||||
"""extra_repr"""
|
||||
s = 'input_channels={}, output_channels={}, kernel_size={},' \
|
||||
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
|
||||
'group={}, data_format={}, has_bias={},' \
|
||||
'weight_init={}, bias_init={}'.format(
|
||||
self.in_channels,
|
||||
self.out_channels,
|
||||
self.kernel_size,
|
||||
self.stride,
|
||||
self.pad_mode,
|
||||
self.padding,
|
||||
self.dilation,
|
||||
self.group,
|
||||
self.data_format,
|
||||
self.has_bias,
|
||||
self.weight,
|
||||
self.bias)
|
||||
|
||||
if self.has_bias:
|
||||
s += ', bias={}'.format(self.bias)
|
||||
return s
|
||||
|
||||
|
||||
class Dense_Thor(Cell):
|
||||
"""Dense_Thor"""
|
||||
|
||||
@cell_attr_register(attrs=['has_bias', 'activation'])
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
weight_init='normal',
|
||||
bias_init='zeros',
|
||||
damping=0.03,
|
||||
loss_scale=1,
|
||||
frequency=278,
|
||||
has_bias=True,
|
||||
activation=None):
|
||||
super(Dense_Thor, self).__init__()
|
||||
self.in_channels = check_int_positive(in_channels)
|
||||
self.out_channels = check_int_positive(out_channels)
|
||||
self.has_bias = check_bool(has_bias)
|
||||
self.thor = True
|
||||
if isinstance(weight_init, Tensor):
|
||||
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
||||
weight_init.shape[1] != in_channels:
|
||||
raise ValueError("weight_init shape error")
|
||||
|
||||
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||||
|
||||
if self.has_bias:
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||||
|
||||
self.matmul = P.MatMul(transpose_b=True)
|
||||
self.bias_add = P.BiasAdd()
|
||||
|
||||
self.activation = get_activation(activation)
|
||||
self.activation_flag = self.activation is not None
|
||||
|
||||
self.matrix_A_inv = Parameter(Tensor(np.zeros([128, 128, 16, 16]).astype(np.float16)), name='matrix_A_inv',
|
||||
requires_grad=False)
|
||||
self.matrix_G_inv = Parameter(Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16)), name="matrix_G_inv",
|
||||
requires_grad=False)
|
||||
self.fake_G = Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16))
|
||||
|
||||
self.matmul = P.MatMul(transpose_b=True)
|
||||
self.cube_matmul = P.CusMatMulCube(transpose_a=True)
|
||||
self.matrix_combine = P.CusMatrixCombine()
|
||||
self.cholesky = P.CusCholeskyTrsm()
|
||||
self.shape = P.Shape()
|
||||
self.reshape = P.Reshape()
|
||||
self.transpose = P.Transpose()
|
||||
self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False)
|
||||
self.mul = P.Mul()
|
||||
self.cast = P.Cast()
|
||||
self.damping = Tensor(damping)
|
||||
self.loss_scale = Tensor(1 / loss_scale, mstype.float16)
|
||||
self.vector_matmul = P.CusBatchMatMul()
|
||||
self.pad = P.Pad(((0, 24), (0, 24)))
|
||||
self.pad1 = P.Pad(((0, 8), (0, 8)))
|
||||
self.slice = P.Slice()
|
||||
self.gather = P.GatherV2()
|
||||
self.assignadd = P.AssignAdd()
|
||||
self.freq = Tensor(frequency, mstype.int32)
|
||||
self.axis = 0
|
||||
self.A_inv_max = Parameter(initializer(0, [1], mstype.float32), name="A_inv_max", requires_grad=False)
|
||||
self.G_inv_max = Parameter(initializer(0, [1], mstype.float32), name="G_inv_max", requires_grad=False)
|
||||
self.fused_abs_max1 = P.CusFusedAbsMax1([1000, 1000])
|
||||
self.fused_abs_max2 = P.CusFusedAbsMax1()
|
||||
self.log = P.Log()
|
||||
self.exp = P.Exp()
|
||||
self.dampingA = Tensor(np.identity(2048), mstype.float32)
|
||||
self.dampingG = Tensor(np.identity(1024), mstype.float32)
|
||||
self.add = P.TensorAdd()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.getG = P.InsertGradientOf(self.save_gradient)
|
||||
|
||||
def save_gradient(self, dout):
|
||||
"""save_gradient"""
|
||||
out = dout
|
||||
dout = self.mul(dout, self.loss_scale)
|
||||
dout = self.mul(dout, 32.0)
|
||||
normalizer = 32
|
||||
matrix_G = self.cube_matmul(dout, dout)
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_G = self.mul(matrix_G, 1.0 / normalizer)
|
||||
matrix_G = self.pad(matrix_G)
|
||||
damping_step = self.gather(self.damping, self.cov_step, 0)
|
||||
damping_step = self.cast(damping_step, mstype.float32)
|
||||
self.cov_step = self.cov_step + self.freq
|
||||
damping = self.sqrt(damping_step)
|
||||
dampingG = self.cast(self.dampingG, mstype.float32)
|
||||
matrix_G = matrix_G + damping * dampingG
|
||||
matrix_G_inv = self.cholesky(matrix_G)
|
||||
matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max1(matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max)
|
||||
self.G_inv_max = matrix_G_inv_max
|
||||
matrix_G_inv = self.matrix_combine(matrix_G_inv)
|
||||
matrix_G_inv = self.slice(matrix_G_inv, (0, 0), (1000, 1000))
|
||||
matrix_G_inv = self.pad1(matrix_G_inv)
|
||||
matrix_G_inv_shape = self.shape(matrix_G_inv)
|
||||
matrix_G_inv = self.reshape(matrix_G_inv, (matrix_G_inv_shape[0] / 16, 16, matrix_G_inv_shape[0] / 16, 16))
|
||||
matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3))
|
||||
matrix_G_inv = self.cast(matrix_G_inv, mstype.float16)
|
||||
self.matrix_G_inv = matrix_G_inv
|
||||
return out
|
||||
|
||||
def construct(self, x):
|
||||
"""construct"""
|
||||
if self.thor:
|
||||
inputs = self.cube_matmul(x, x)
|
||||
normalizer = 32
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_A = self.mul(inputs, 1.0 / normalizer)
|
||||
|
||||
damping_step = self.gather(self.damping, self.cov_step, self.axis)
|
||||
damping_step = self.cast(damping_step, mstype.float32)
|
||||
damping = self.sqrt(damping_step)
|
||||
dampingA = self.cast(self.dampingA, mstype.float32)
|
||||
matrix_A = matrix_A + damping * dampingA
|
||||
matrix_A_inv = self.cholesky(matrix_A)
|
||||
matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv)
|
||||
|
||||
matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv)
|
||||
matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv_max)
|
||||
self.A_inv_max = matrix_A_inv_max
|
||||
|
||||
matrix_A_inv = self.matrix_combine(matrix_A_inv)
|
||||
matrix_A_inv_shape = self.shape(matrix_A_inv)
|
||||
matrix_A_inv = self.reshape(matrix_A_inv, (matrix_A_inv_shape[0] / 16, 16, matrix_A_inv_shape[0] / 16, 16))
|
||||
matrix_A_inv = self.transpose(matrix_A_inv, (2, 0, 1, 3))
|
||||
matrix_A_inv = self.cast(matrix_A_inv, mstype.float16)
|
||||
self.matrix_A_inv = matrix_A_inv
|
||||
self.matrix_G_inv = self.fake_G
|
||||
output = self.matmul(x, self.weight)
|
||||
output = self.getG(output)
|
||||
else:
|
||||
output = self.matmul(x, self.weight)
|
||||
|
||||
if self.has_bias:
|
||||
output = self.bias_add(output, self.bias)
|
||||
if self.activation_flag:
|
||||
return self.activation(output)
|
||||
return output
|
||||
|
||||
def extend_repr(self):
|
||||
"""extend_repr"""
|
||||
str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \
|
||||
.format(self.in_channels, self.out_channels, self.weight, self.has_bias)
|
||||
if self.has_bias:
|
||||
str_info = str_info + ', bias={}'.format(self.bias)
|
||||
|
||||
if self.activation_flag:
|
||||
str_info = str_info + ', activation={}'.format(self.activation)
|
||||
|
||||
return str_info
|
|
@ -0,0 +1,385 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""train and evaluate resnet50 network on imagenet dataset"""
|
||||
|
||||
import os
|
||||
import time
|
||||
from multiprocessing import Process, Queue
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.model_zoo.resnet import resnet50
|
||||
import mindspore.nn as nn
|
||||
import mindspore.dataset as ds
|
||||
|
||||
from tests.st.networks.models.resnet50.src.dataset import create_dataset
|
||||
from tests.st.networks.models.resnet50.src.lr_generator import get_learning_rate
|
||||
from tests.st.networks.models.resnet50.src.config import config
|
||||
from tests.st.networks.models.resnet50.src.metric import DistAccuracy, ClassifyCorrectCell
|
||||
from tests.st.networks.models.resnet50.src_thor.config import config as thor_config
|
||||
from tests.st.networks.models.resnet50.src_thor.model_thor import Model as THOR_Model
|
||||
from tests.st.networks.models.resnet50.src_thor.resnet import resnet50 as resnet50_thor
|
||||
from tests.st.networks.models.resnet50.src_thor.thor import THOR
|
||||
|
||||
|
||||
MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_tabel_4p/rank_table_4p_1.json"
|
||||
MINDSPORE_HCCL_CONFIG_PATH_2 = "/home/workspace/mindspore_config/hccl/rank_tabel_4p/rank_table_4p_2.json"
|
||||
dataset_path = "/home/workspace/mindspore_dataset/imagenet/imagenet_original/train"
|
||||
eval_path = "/home/workspace/mindspore_dataset/imagenet/imagenet_original/val"
|
||||
|
||||
np.random.seed(1)
|
||||
ds.config.set_seed(1)
|
||||
os.environ['GLOG_v'] = str(2)
|
||||
|
||||
def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
|
||||
"""get_model_lr"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
for i in range(total_steps):
|
||||
epoch = (i + 1) / steps_per_epoch
|
||||
base = (1.0 - float(epoch) / total_epochs) ** decay
|
||||
lr_local = lr_init * base
|
||||
if epoch >= 39:
|
||||
lr_local = lr_local * 0.5
|
||||
if epoch >= 40:
|
||||
lr_local = lr_local * 0.5
|
||||
lr_each_step.append(lr_local)
|
||||
current_step = global_step
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[current_step:]
|
||||
return learning_rate
|
||||
|
||||
|
||||
def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
||||
"""get_model_damping"""
|
||||
damping_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
for step in range(total_steps):
|
||||
epoch = (step + 1) / steps_per_epoch
|
||||
damping_here = damping_init * (decay_rate ** (epoch / 10))
|
||||
damping_each_step.append(damping_here)
|
||||
|
||||
current_step = global_step
|
||||
damping_each_step = np.array(damping_each_step).astype(np.float32)
|
||||
damping_now = damping_each_step[current_step:]
|
||||
return damping_now
|
||||
|
||||
|
||||
class LossGet(Callback):
|
||||
def __init__(self, per_print_times, data_size):
|
||||
super(LossGet, self).__init__()
|
||||
if not isinstance(per_print_times, int) or per_print_times < 0:
|
||||
raise ValueError("print_step must be int and >= 0.")
|
||||
self._per_print_times = per_print_times
|
||||
self._loss = 0.0
|
||||
self.data_size = data_size
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(loss, (tuple, list)):
|
||||
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
|
||||
loss = loss[0]
|
||||
|
||||
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
|
||||
loss = np.mean(loss.asnumpy())
|
||||
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
|
||||
|
||||
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
|
||||
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training."
|
||||
.format(cb_params.cur_epoch_num, cur_step_in_epoch))
|
||||
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
|
||||
self._loss = loss
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
self._per_step_mseconds = epoch_mseconds / self.data_size
|
||||
|
||||
def get_loss(self):
|
||||
return self._loss
|
||||
|
||||
def get_per_step_time(self):
|
||||
return self._per_step_mseconds
|
||||
|
||||
|
||||
def train_process(q, device_id, epoch_size, device_num, enable_hccl):
|
||||
os.system("mkdir " + str(device_id))
|
||||
os.chdir(str(device_id))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
|
||||
context.set_context(device_id=device_id)
|
||||
os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH
|
||||
os.environ['RANK_ID'] = str(device_id)
|
||||
os.environ['RANK_SIZE'] = str(device_num)
|
||||
if enable_hccl:
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True, parameter_broadcast=True)
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
|
||||
init()
|
||||
|
||||
# network
|
||||
net = resnet50(class_num=config.class_num)
|
||||
|
||||
# evaluation network
|
||||
dist_eval_network = ClassifyCorrectCell(net)
|
||||
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
|
||||
# loss
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor,
|
||||
num_classes=config.class_num)
|
||||
|
||||
# train dataset
|
||||
dataset = create_dataset(dataset_path=dataset_path, do_train=True,
|
||||
repeat_num=epoch_size, batch_size=config.batch_size)
|
||||
|
||||
step_size = dataset.get_dataset_size()
|
||||
eval_interval = config.eval_interval
|
||||
dataset.__loop_size__ = step_size * eval_interval
|
||||
|
||||
# evalutation dataset
|
||||
eval_dataset = create_dataset(dataset_path=eval_path, do_train=False,
|
||||
repeat_num=epoch_size, batch_size=config.eval_batch_size)
|
||||
|
||||
# loss scale
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
|
||||
# learning rate
|
||||
lr = Tensor(get_learning_rate(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max,
|
||||
warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size,
|
||||
steps_per_epoch=step_size, lr_decay_mode=config.lr_decay_mode))
|
||||
|
||||
# optimizer
|
||||
decayed_params = list(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name,
|
||||
net.trainable_params()))
|
||||
no_decayed_params = [param for param in net.trainable_params() if param not in decayed_params]
|
||||
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
|
||||
{'params': no_decayed_params},
|
||||
{'order_params': net.trainable_params()}]
|
||||
|
||||
if config.use_lars:
|
||||
momentum = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||
use_nesterov=config.use_nesterov)
|
||||
opt = nn.LARS(momentum, epsilon=config.lars_epsilon, hyperpara=config.lars_coefficient,
|
||||
weight_decay=config.weight_decay,
|
||||
decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name,
|
||||
lars_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name,
|
||||
loss_scale=config.loss_scale)
|
||||
|
||||
else:
|
||||
opt = nn.Momentum(group_params, lr, config.momentum,
|
||||
weight_decay=config.weight_decay, loss_scale=config.loss_scale,
|
||||
use_nesterov=config.use_nesterov)
|
||||
|
||||
# model
|
||||
model = Model(net, loss_fn=loss, optimizer=opt,
|
||||
loss_scale_manager=loss_scale, amp_level="O2", keep_batchnorm_fp32=False,
|
||||
metrics={'acc': DistAccuracy(batch_size=config.eval_batch_size, device_num=device_num)},
|
||||
eval_network=dist_eval_network)
|
||||
|
||||
# model init
|
||||
print("init_start", device_id)
|
||||
model.init(dataset, eval_dataset)
|
||||
print("init_stop", device_id)
|
||||
|
||||
# callbacks
|
||||
loss_cb = LossGet(1, step_size)
|
||||
|
||||
# train and eval
|
||||
print("run_start", device_id)
|
||||
acc = 0.0
|
||||
time_cost = 0.0
|
||||
for epoch_idx in range(0, int(epoch_size / eval_interval)):
|
||||
model.train(1, dataset, callbacks=loss_cb)
|
||||
eval_start = time.time()
|
||||
output = model.eval(eval_dataset)
|
||||
eval_cost = (time.time() - eval_start) * 1000
|
||||
acc = float(output["acc"])
|
||||
time_cost = loss_cb.get_per_step_time()
|
||||
loss = loss_cb.get_loss()
|
||||
print("the {} epoch's resnet result:\n "
|
||||
"device{}, training loss {}, acc {}, "
|
||||
"training per step cost {:.2f} ms, eval cost {:.2f} ms, total_cost {:.2f} ms".format(
|
||||
epoch_idx, device_id, loss, acc, time_cost, eval_cost, time_cost * step_size + eval_cost))
|
||||
q.put({'acc': acc, 'cost': time_cost})
|
||||
|
||||
|
||||
def train_process_thor(q, device_id, epoch_size, device_num, enable_hccl):
|
||||
os.system("mkdir " + str(device_id))
|
||||
os.chdir(str(device_id))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
|
||||
context.set_context(device_id=device_id)
|
||||
os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH_2
|
||||
os.environ['RANK_ID'] = str(device_id - 4)
|
||||
os.environ['RANK_SIZE'] = str(device_num)
|
||||
if enable_hccl:
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True, parameter_broadcast=True)
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5")
|
||||
init()
|
||||
|
||||
# network
|
||||
damping = get_model_damping(0, 0.03, 0.87, 50, 5004)
|
||||
net = resnet50_thor(class_num=thor_config.class_num, damping=damping, loss_scale=thor_config.loss_scale,
|
||||
frequency=thor_config.frequency)
|
||||
|
||||
# evaluation network
|
||||
dist_eval_network = ClassifyCorrectCell(net)
|
||||
|
||||
if not thor_config.label_smooth:
|
||||
thor_config.label_smooth_factor = 0.0
|
||||
|
||||
# loss
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
|
||||
smooth_factor=thor_config.label_smooth_factor,
|
||||
num_classes=thor_config.class_num)
|
||||
|
||||
# train dataset
|
||||
dataset = create_dataset(dataset_path=dataset_path, do_train=True,
|
||||
repeat_num=epoch_size, batch_size=thor_config.batch_size)
|
||||
|
||||
step_size = dataset.get_dataset_size()
|
||||
eval_interval = thor_config.eval_interval
|
||||
|
||||
# evalutation dataset
|
||||
eval_dataset = create_dataset(dataset_path=eval_path, do_train=False,
|
||||
repeat_num=epoch_size, batch_size=thor_config.eval_batch_size)
|
||||
|
||||
# loss scale
|
||||
loss_scale = FixedLossScaleManager(thor_config.loss_scale, drop_overflow_update=False)
|
||||
|
||||
# learning rate
|
||||
lr = Tensor(get_model_lr(0, 0.045, 6, 70, 5004))
|
||||
|
||||
# optimizer
|
||||
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, thor_config.momentum,
|
||||
filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
|
||||
filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
|
||||
filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()),
|
||||
filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()),
|
||||
thor_config.weight_decay, thor_config.loss_scale)
|
||||
|
||||
# model
|
||||
model = THOR_Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, amp_level="O2",
|
||||
keep_batchnorm_fp32=False,
|
||||
metrics={'acc': DistAccuracy(batch_size=thor_config.eval_batch_size, device_num=device_num)},
|
||||
eval_network=dist_eval_network, frequency=thor_config.frequency)
|
||||
|
||||
# model init
|
||||
print("init_start", device_id)
|
||||
model.init(dataset, eval_dataset)
|
||||
print("init_stop", device_id)
|
||||
|
||||
# callbacks
|
||||
loss_cb = LossGet(1, step_size)
|
||||
|
||||
# train and eval
|
||||
acc = 0.0
|
||||
time_cost = 0.0
|
||||
print("run_start", device_id)
|
||||
for epoch_idx in range(0, int(epoch_size / eval_interval)):
|
||||
model.train(eval_interval, dataset, callbacks=loss_cb)
|
||||
eval_start = time.time()
|
||||
output = model.eval(eval_dataset)
|
||||
eval_cost = (time.time() - eval_start) * 1000
|
||||
acc = float(output["acc"])
|
||||
time_cost = loss_cb.get_per_step_time()
|
||||
loss = loss_cb.get_loss()
|
||||
print("the {} epoch's resnet result:\n "
|
||||
"device{}, training loss {}, acc {}, "
|
||||
"training per step cost {:.2f} ms, eval cost {:.2f} ms, total_cost {:.2f} ms".format(
|
||||
epoch_idx, device_id, loss, acc, time_cost, eval_cost, time_cost * step_size + eval_cost))
|
||||
q.put({'acc': acc, 'cost': time_cost})
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_resnet_and_resnet_thor_imagenet_4p():
|
||||
q = Queue()
|
||||
q2 = Queue()
|
||||
|
||||
# resnet50
|
||||
device_num = 4
|
||||
epoch_size = 2
|
||||
epoch_size_2 = 1
|
||||
enable_hccl = True
|
||||
process = []
|
||||
process2 = []
|
||||
for i in range(device_num):
|
||||
device_id = i
|
||||
process.append(Process(target=train_process,
|
||||
args=(q, device_id, epoch_size, device_num, enable_hccl)))
|
||||
process2.append(Process(target=train_process_thor,
|
||||
args=(q2, device_id + 4, epoch_size_2, device_num, enable_hccl)))
|
||||
|
||||
for i in range(device_num):
|
||||
process[i].start()
|
||||
process2[i].start()
|
||||
|
||||
print("Waiting for all subprocesses done...")
|
||||
|
||||
for i in range(device_num):
|
||||
process[i].join()
|
||||
process2[i].join()
|
||||
|
||||
# resnet
|
||||
acc = 0.0
|
||||
cost = 0.0
|
||||
for i in range(device_num):
|
||||
output = q.get()
|
||||
acc += output['acc']
|
||||
cost += output['cost']
|
||||
acc = acc / device_num
|
||||
cost = cost / device_num
|
||||
|
||||
for i in range(device_num):
|
||||
os.system("rm -rf " + str(i))
|
||||
print("End training...")
|
||||
assert acc > 0.13
|
||||
assert cost < 21
|
||||
|
||||
# THOR
|
||||
thor_acc = 0.0
|
||||
thor_cost = 0.0
|
||||
for i in range(device_num):
|
||||
output = q2.get()
|
||||
thor_acc += output['acc']
|
||||
thor_cost += output['cost']
|
||||
thor_acc = thor_acc / device_num
|
||||
thor_cost = thor_cost / device_num
|
||||
|
||||
for i in range(4, device_num + 4):
|
||||
os.system("rm -rf " + str(i))
|
||||
print("End training...")
|
||||
assert thor_acc > 0.22
|
||||
assert thor_cost < 22
|
|
@ -15,8 +15,6 @@
|
|||
|
||||
import os
|
||||
import random
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
from resnet import resnet50
|
||||
|
||||
|
@ -152,10 +150,7 @@ def train_process(epoch_size, num_classes, batch_size):
|
|||
print("result: ", res)
|
||||
return res
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
|
||||
def test_resnet_cifar_1p():
|
||||
epoch_size = 1
|
||||
num_classes = 10
|
||||
|
|
|
@ -17,7 +17,7 @@ import os
|
|||
import random
|
||||
from multiprocessing import Process, Queue
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from resnet import resnet50
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
|
@ -173,10 +173,6 @@ def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size,
|
|||
q.put(loss_cb.get_loss())
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_resnet_cifar_8p():
|
||||
q = Queue()
|
||||
device_num = 8
|
||||
|
|
Loading…
Reference in New Issue