do not reverse option for HyperMap when optimizers is adam or ftrl
This commit is contained in:
parent
4703c3085f
commit
426db22c35
|
@ -350,15 +350,15 @@ class Adam(Optimizer):
|
|||
beta2_power = self.beta2_power * self.beta2
|
||||
self.beta2_power = beta2_power
|
||||
if self.is_group_lr:
|
||||
success = self.map_reverse(F.partial(_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.use_locking, self.use_nesterov, self._is_device,
|
||||
beta1_power, beta2_power, self.beta1, self.beta2, self.eps),
|
||||
lr, gradients, params, moment1, moment2, self.ps_parameters, self.cache_enable)
|
||||
success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.use_locking, self.use_nesterov, self._is_device,
|
||||
beta1_power, beta2_power, self.beta1, self.beta2, self.eps),
|
||||
lr, gradients, params, moment1, moment2, self.ps_parameters, self.cache_enable)
|
||||
else:
|
||||
success = self.map_reverse(F.partial(_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.use_locking, self.use_nesterov, self._is_device,
|
||||
beta1_power, beta2_power, self.beta1, self.beta2, self.eps, lr),
|
||||
gradients, params, moment1, moment2, self.ps_parameters, self.cache_enable)
|
||||
success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.use_locking, self.use_nesterov, self._is_device,
|
||||
beta1_power, beta2_power, self.beta1, self.beta2, self.eps, lr),
|
||||
gradients, params, moment1, moment2, self.ps_parameters, self.cache_enable)
|
||||
return success
|
||||
|
||||
@Optimizer.target.setter
|
||||
|
|
|
@ -226,9 +226,9 @@ class FTRL(Optimizer):
|
|||
grads = self._grad_sparse_indices_deduplicate(grads)
|
||||
lr = self.get_lr()
|
||||
|
||||
success = self.map_reverse(F.partial(_ftrl_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.l1, self.l2, self.lr_power, lr),
|
||||
linear, grads, params, moments, self.ps_parameters, self.cache_enable)
|
||||
success = self.map_(F.partial(_ftrl_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
|
||||
self.l1, self.l2, self.lr_power, lr),
|
||||
linear, grads, params, moments, self.ps_parameters, self.cache_enable)
|
||||
return success
|
||||
|
||||
@Optimizer.target.setter
|
||||
|
|
Loading…
Reference in New Issue