add CountNonZero

This commit is contained in:
stcloud 2022-11-29 23:30:42 +08:00
parent 810019e13c
commit 41742595c3
10 changed files with 629 additions and 0 deletions

View File

@ -0,0 +1,256 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plugin/device/cpu/kernel/count_nonzero_cpu_kernel.h"
#include <string>
#include <vector>
#include <complex>
#include <memory>
#include <map>
#include <algorithm>
#include <utility>
#include <numeric>
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/device/cpu/kernel/nnacl/fp32/mul_fp32.h"
namespace mindspore {
namespace kernel {
namespace {
const size_t kCountNonZeroInputsNum = 1;
const size_t kCountNonZeroOutputsNum = 1;
std::vector<int64_t> cnz_dims;
std::vector<int64_t> cnz_transposed_shape;
int64_t cnz_stride;
using complex64 = std::complex<float>;
using complex128 = std::complex<double>;
// Class def of ParallelIterator.
class ParallelIterator {
public:
ParallelIterator(const std::vector<int64_t> &transposed_shape, const std::vector<int64_t> &dims,
const std::vector<int64_t> &input_shape);
~ParallelIterator() = default;
void Next();
void Set(int64_t pos);
inline int64_t Get() const { return _pos; }
private:
int64_t _dimension{0};
std::vector<int64_t> _coord;
std::vector<int64_t> _shape;
std::vector<int64_t> _strides;
std::vector<int64_t> _back_strides;
std::vector<int64_t> _dims;
int64_t _pos{0};
};
ParallelIterator::ParallelIterator(const std::vector<int64_t> &transposed_shape, const std::vector<int64_t> &dims,
const std::vector<int64_t> &input_shape)
: _dimension(transposed_shape.size()),
_coord(transposed_shape.size(), 0),
_shape(transposed_shape),
_strides(transposed_shape.size(), 1),
_back_strides(transposed_shape.size(), 1),
_dims(dims),
_pos(0) {
std::vector<int64_t> strides(_dimension, 1);
for (int64_t i = _dimension - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * input_shape[i + 1];
}
for (int64_t i = _dimension - 1; i >= 0; --i) {
_strides[i] = strides[_dims[i]];
_back_strides[i] = (_shape[i] - 1) * _strides[i];
}
}
void ParallelIterator::Set(int64_t pos) {
for (int64_t i = _dimension - 1; i >= 0 && pos != 0; --i) {
_coord[i] = pos % _shape[i];
_pos += _coord[i] * _strides[i];
pos /= _shape[i];
}
}
void ParallelIterator::Next() {
for (int64_t i = _dimension - 1; i >= 0; --i) {
if (_coord[i] + 1 == _shape[i]) {
_coord[i] = 0;
_pos -= _back_strides[i];
} else {
_coord[i]++;
_pos += _strides[i];
break;
}
}
}
} // namespace
template <class T>
struct is_complex_t : std::false_type {};
template <class T>
struct is_complex_t<std::complex<T>> : std::true_type {};
template <class T>
int64_t IsNonZero(T val, std::true_type) {
return val.real() != 0 || val.imag() != 0 ? static_cast<int64_t>(1) : static_cast<int64_t>(0);
}
template <class T>
int64_t IsNonZero(T val, std::false_type) {
return val != static_cast<T>(0) ? static_cast<int64_t>(1) : static_cast<int64_t>(0);
}
bool CountNonZeroCpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
const std::vector<KernelTensorPtr> &outputs) {
kernel_name_ = base_operator->name();
x_shape_ = inputs[0]->GetShapeVector();
y_shape_ = outputs[0]->GetShapeVector();
int64_t input_rank = x_shape_.size();
std::vector<int64_t> dims = GetValue<std::vector<int64_t>>(base_operator->GetAttr("dims"));
if (dims.size() == 0) {
for (int64_t i = 0; i < input_rank; ++i) {
dims.push_back(i);
}
}
// Check dims in [-x_rank, x_rank)
std::for_each(dims.begin(), dims.end(), [input_rank](auto &dim) { dim = dim < 0 ? dim + input_rank : dim; });
std::sort(dims.begin(), dims.end());
dims.erase(std::unique(dims.begin(), dims.end()), dims.end());
int64_t stride_ = static_cast<int64_t>(1);
std::vector<int64_t> axes_(input_rank);
int64_t j = static_cast<int64_t>(0), k = static_cast<int64_t>(0);
for (int64_t i = 0; i < input_rank; i++) {
if (j == static_cast<int64_t>(dims.size()) || i != dims[j]) {
axes_[k] = i;
++k;
} else {
stride_ *= x_shape_[i];
++j;
}
}
for (auto &dim : dims) {
axes_[k] = dim;
++k;
}
// Calculate transposed_shape using axes.
// For example, if input_shape = (3, 4, 5, 6, 7), axes = [0, 2, 4, 1, 3],
// then transposed_shape = (3, 5, 7) + (4, 6)
std::vector<int64_t> transposed_shape_(input_rank);
for (int64_t i = 0; i < input_rank; ++i) {
transposed_shape_[i] = x_shape_[axes_[i]];
}
// Assign values.
cnz_stride = stride_, cnz_transposed_shape = transposed_shape_, cnz_dims = axes_;
auto kernel_attr = GetKernelAttrFromTensors(inputs, outputs);
auto [is_match, index] = MatchKernelAttr(kernel_attr, GetOpSupport());
if (!is_match) {
MS_LOG(ERROR) << kernel_name_ << " does not support this kernel data type: " << kernel_attr;
return false;
}
kernel_func_ = func_list_[index].second;
return true;
}
template <typename T>
bool CountNonZeroCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kCountNonZeroInputsNum, kernel_name_);
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kCountNonZeroOutputsNum, kernel_name_);
auto *x = reinterpret_cast<T *>(inputs[0]->addr);
auto *y = reinterpret_cast<int64_t *>(outputs[0]->addr);
auto input_shape = x_shape_;
int64_t input_nums = static_cast<int64_t>(inputs[0]->size / sizeof(T));
int64_t data_nums = static_cast<int64_t>(outputs[0]->size / sizeof(int64_t));
if (y_shape_.size() == 0) {
(void)y_shape_.insert(y_shape_.begin(), 1);
}
auto output_size = SizeOf(y_shape_);
auto count_nonzero_scalar_shard = [&](int64_t start, int64_t end) {
y[0] = static_cast<int64_t>(0);
for (int64_t i = start; i < end; ++i) {
y[0] += IsNonZero<T>(x[i], is_complex_t<T>{});
}
};
auto count_nonzero_shard = [&](int64_t start, int64_t end) {
ParallelIterator iter(cnz_transposed_shape, cnz_dims, input_shape);
iter.Set(start * cnz_stride);
for (int64_t i = start; i < end; ++i) {
int64_t reduce_initial = static_cast<int64_t>(0);
for (int64_t j = 0; j < cnz_stride; ++j) {
reduce_initial += IsNonZero<T>(x[iter.Get()], is_complex_t<T>{});
iter.Next();
}
y[i] = reduce_initial;
}
};
if (data_nums == 1) {
ParallelLaunchAutoSearch(count_nonzero_scalar_shard, input_nums, this, &parallel_search_info_);
} else {
ParallelLaunchAutoSearch(count_nonzero_shard, output_size, this, &parallel_search_info_);
}
return true;
}
std::vector<std::pair<KernelAttr, CountNonZeroCpuKernelMod::CountNonZeroLaunchFunc>>
CountNonZeroCpuKernelMod::func_list_ = {
{KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<float16>},
{KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<float>},
{KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<double>},
{KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<int8_t>},
{KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<int16_t>},
{KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<int32_t>},
{KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<int64_t>},
{KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<uint8_t>},
{KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<uint16_t>},
{KernelAttr().AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<uint32_t>},
{KernelAttr().AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<uint64_t>},
{KernelAttr().AddInputAttr(kNumberTypeComplex64).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<complex64>},
{KernelAttr().AddInputAttr(kNumberTypeComplex128).AddOutputAttr(kNumberTypeInt64),
&CountNonZeroCpuKernelMod::LaunchKernel<complex128>}};
std::vector<KernelAttr> CountNonZeroCpuKernelMod::GetOpSupport() {
std::vector<KernelAttr> support_list;
(void)std::transform(func_list_.begin(), func_list_.end(), std::back_inserter(support_list),
[](const std::pair<KernelAttr, CountNonZeroLaunchFunc> &pair) { return pair.first; });
return support_list;
}
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, CountNonZero, CountNonZeroCpuKernelMod);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,65 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_COUNT_NONZERO_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_COUNT_NONZERO_CPU_KERNEL_H_
#include <memory>
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <utility>
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/factory/ms_factory.h"
#include "plugin/device/cpu/kernel/nnacl/arithmetic.h"
namespace mindspore {
namespace kernel {
class CountNonZeroCpuKernelMod : public NativeCpuKernelMod {
public:
CountNonZeroCpuKernelMod() = default;
~CountNonZeroCpuKernelMod() override = default;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override {
return kernel_func_(this, inputs, outputs);
}
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
const std::vector<KernelTensorPtr> &outputs) override;
protected:
std::vector<KernelAttr> GetOpSupport() override;
private:
template <typename T>
bool LaunchKernel(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
using CountNonZeroLaunchFunc = std::function<bool(CountNonZeroCpuKernelMod *, const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &)>;
static std::vector<std::pair<KernelAttr, CountNonZeroLaunchFunc>> func_list_;
CountNonZeroLaunchFunc kernel_func_;
float value_;
ShapeVector x_shape_;
ShapeVector y_shape_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_COUNT_NONZERO_CPU_KERNEL_H_

View File

@ -156,6 +156,7 @@ constexpr auto kSelfAdjointEig = "SelfAdjointEig";
// Arrays
constexpr auto kLeftShift = "LeftShift";
constexpr auto kCountNonZero = "CountNonZero";
constexpr auto kFillDiagonal = "FillDiagonal";
constexpr auto kSegmentMax = "SegmentMax";
constexpr auto kSegmentSum = "SegmentSum";
@ -536,6 +537,7 @@ GVAR_DEF(PrimitivePtr, kPrimArrayReduce, std::make_shared<Primitive>("array_redu
GVAR_DEF(PrimitivePtr, kPrimCast, std::make_shared<Primitive>("Cast"));
GVAR_DEF(PrimitivePtr, kPrimConcat, std::make_shared<Primitive>(kConcat));
GVAR_DEF(PrimitivePtr, kPrimParallelConcat, std::make_shared<Primitive>(kParallelConcat));
GVAR_DEF(PrimitivePtr, kPrimCountNonZero, std::make_shared<Primitive>("CountNonZero"));
GVAR_DEF(PrimitivePtr, kPrimFlattenConcat, std::make_shared<Primitive>(kFlattenConcat));
GVAR_DEF(PrimitivePtr, kPrimSqueeze, std::make_shared<Primitive>("Squeeze"));
GVAR_DEF(PrimitivePtr, kPrimSqueezeV3, std::make_shared<Primitive>("SqueezeV3"));

View File

@ -0,0 +1,126 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <set>
#include <map>
#include <string>
#include "ops/count_nonzero.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
#include "abstract/ops/primitive_infer_map.h"
#include "mindapi/src/helper.h"
#include "mindspore/core/utils/check_convert_utils.h"
namespace mindspore {
namespace ops {
namespace {
std::vector<int64_t> CheckAttrIntOrTuple(const ValuePtr &attr) {
std::vector<int64_t> result{};
MS_EXCEPTION_IF_NULL(attr);
if (attr->isa<ValueTuple>() || attr->isa<ValueList>()) {
result = GetValue<std::vector<int64_t>>(attr);
} else {
auto attr_val = GetValue<int64_t>(attr);
(void)result.insert(result.begin(), 1, attr_val);
}
return result;
}
abstract::ShapePtr CountNonZeroInferShape(const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
auto prim_name = primitive->name();
for (const auto &item : input_args) {
MS_EXCEPTION_IF_NULL(item);
}
auto input_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
auto output_shape = input_shape;
auto input_rank = SizeToLong(input_shape.size());
std::vector<int64_t> dims = CheckAttrIntOrTuple(primitive->GetAttr("dims"));
if (dims.size() == 0) {
output_shape = std::vector<int64_t>{};
return std::make_shared<abstract::Shape>(output_shape);
}
for (size_t i = 0; i < dims.size(); ++i) {
int64_t origin_dims = dims[i];
if (dims[i] < 0) {
dims[i] += input_rank;
}
string dims_name = "dims[" + std::to_string(i) + "]";
int64_t int_input_rank = static_cast<int64_t>(input_rank);
if (input_rank == 0) {
if (dims[i] != 0 && dims[i] != -1) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', the dims[" << i << "] is out of range[-1, 0].";
}
} else if (int_input_rank > 0) {
CheckAndConvertUtils::CheckInRange(dims_name, origin_dims, kIncludeLeft, {-int_input_rank, int_input_rank},
"CountNonZero");
}
}
if (input_rank == 0) {
output_shape = std::vector<int64_t>{};
primitive->EraseAttr("dims");
primitive->set_attr("dims", MakeValue(std::vector<int64_t>{}));
return std::make_shared<abstract::Shape>(output_shape);
}
for (size_t i = 0; i < dims.size(); ++i) {
output_shape[dims[i]] = -1;
}
for (std::vector<int64_t>::iterator iter = output_shape.begin(); iter != output_shape.end(); ++iter) {
if (*iter == -1) {
iter = output_shape.erase(iter);
iter -= 1;
}
}
std::set<int64_t> dim_set(dims.begin(), dims.end());
if (dim_set.size() != dims.size()) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', the dims contain duplicates.";
} else {
std::vector<int64_t> dims_processed(dim_set.begin(), dim_set.end());
primitive->EraseAttr("dims");
primitive->set_attr("dims", MakeValue(dims_processed));
}
return std::make_shared<abstract::Shape>(output_shape);
}
TypePtr CountNonZeroInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
TypePtr input_x_type = input_args[0]->BuildType();
MS_EXCEPTION_IF_NULL(input_x_type);
const std::set<TypePtr> valid_types = {kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32,
kUInt64, kFloat16, kFloat32, kFloat64, kComplex64, kComplex128};
(void)CheckAndConvertUtils::CheckTensorTypeValid("x", input_x_type, valid_types, prim->name());
auto y_type = std::make_shared<TensorType>(kInt64);
return y_type;
}
} // namespace
AbstractBasePtr CountNonZeroInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
const int64_t kInputsNum = 1;
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, kInputsNum, primitive->name());
auto infer_shape = CountNonZeroInferShape(primitive, input_args);
auto infer_type = CountNonZeroInferType(primitive, input_args);
return abstract::MakeAbstract(infer_shape, infer_type);
}
MIND_API_OPERATOR_IMPL(CountNonZero, BaseOperator);
REGISTER_PRIMITIVE_EVAL_IMPL(CountNonZero, prim::kPrimCountNonZero, CountNonZeroInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,41 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_COUNT_NONZERO_H_
#define MINDSPORE_CORE_OPS_COUNT_NONZERO_H_
#include <memory>
#include <vector>
#include "abstract/abstract_value.h"
#include "mindapi/base/types.h"
#include "ops/base_operator.h"
#include "ops/primitive_c.h"
#include "utils/check_convert_utils.h"
namespace mindspore {
namespace ops {
constexpr auto kNameCountNonZero = "CountNonZero";
class MIND_API CountNonZero : public BaseOperator {
public:
MIND_API_BASE_MEMBER(CountNonZero);
CountNonZero() : BaseOperator(kNameCountNonZero) { InitIOName({"x"}, {"y"}); }
};
abstract::AbstractBasePtr CountNonZeroInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args);
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_COUNT_NONZERO_H_

View File

@ -47,6 +47,7 @@ from mindspore.ops.operations.array_ops import Im2Col
from mindspore.ops.operations.array_ops import Col2Im
from mindspore.ops.operations.array_ops import StridedSliceV2
from mindspore.ops.operations.array_ops import MaskedScatter
from mindspore.ops.operations.array_ops import CountNonZero
from mindspore.ops.operations._grad_ops import StridedSliceV2Grad
from mindspore.ops.operations.random_ops import LogNormalReverse
from mindspore.ops.operations import _inner_ops as inner
@ -163,6 +164,16 @@ def get_bprop_masked_scatter(self):
return bprop
@bprop_getters.register(CountNonZero)
def get_bprop_countnonzero(self):
"""Grad definition for CountNonZero"""
def bprop(x, out, dout):
return (zeros_like(x),)
return bprop
@bprop_getters.register(Mvlgamma)
def get_bprop_mvlgamma(self):
"""Grad definition for Mvlgamma"""

View File

@ -0,0 +1,43 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CountNonZero op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
count_nonzero_op_info = AiCPURegOp("CountNonZero") \
.fusion_type("OPAQUE") \
.input(0, "x", "required") \
.output(0, "y", "required") \
.attr("dims", "listInt")\
.dtype_format(DataType.I8_Default, DataType.I64_Default) \
.dtype_format(DataType.I16_Default, DataType.I64_Default) \
.dtype_format(DataType.I32_Default, DataType.I64_Default) \
.dtype_format(DataType.I64_Default, DataType.I64_Default) \
.dtype_format(DataType.U8_Default, DataType.I64_Default) \
.dtype_format(DataType.U16_Default, DataType.I64_Default) \
.dtype_format(DataType.U32_Default, DataType.I64_Default) \
.dtype_format(DataType.U64_Default, DataType.I64_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default) \
.dtype_format(DataType.C64_Default, DataType.I64_Default) \
.dtype_format(DataType.C128_Default, DataType.I64_Default) \
.get_op_info()
@op_info_register(count_nonzero_op_info)
def _count_nonzero_aicpu():
"""CountNonZero AiCPU register"""
return

View File

@ -43,6 +43,7 @@ from mindspore.ops.operations.array_ops import (
Expand,
Lstsq,
Mvlgamma,
CountNonZero,
)
from mindspore.ops.operations.array_ops import TensorScatterElements
from mindspore.common import Tensor
@ -5160,6 +5161,45 @@ def mvlgamma(input, p):
return mvlgamma_op(input)
def count_nonzero(x, dims=None):
"""
Counts the number of non-zero values in the input tensor along the given dims.
If no dim is specified then all non-zeros in the tensor are counted.
Note:
The value range of "dims" is [-x_dims, x_dims). "x_dims" is the dimension length of input "x".
Args:
x (Tensor): Input to be computed, a N-D Tensor, can be any dimension. Set the shape of input tensor as
:math:`(x_1, x_2, ..., x_N)` .
dims (int, list[int], tuple[int]): The dimension to count the number of non-zero values along.
Default: None.
Returns:
A N-D Tensor, represents the number of the nonzero elements of the input tensor along the dims.
Reduces x_shape along the dimensions given in dims. For example, if the size of x is (2, 3, 4),
dims is [0, 1], y_shape will be (4,).
Raises:
TypeError: If the data type of `x` is not support.
TypeError: If the data type of `dims` is not int.
ValueError: If any of the values of `dims` is not in [-x_dims, x_dims).
Supported Platforms:
``CPU``
Examples:
>>> x = Tensor([[0, 0, 1], [1, 1, 2], [0, 0, 1]], mindspore.int64)
>>> y = ops.count_nonzero(x, dims=[1])
>>> print(y)
[1 3 1]
"""
dims = [] if dims is None else dims
count_nonzero_ = CountNonZero(dims)
return count_nonzero_(x)
__all__ = [
'unique',
'unique_with_pad',

View File

@ -7841,3 +7841,33 @@ class Bincount(Primitive):
def __init__(self):
"""Initialize Bincount"""
self.init_prim_io_names(inputs=['array', 'size', 'weights'], outputs=['bins'])
class CountNonZero(Primitive):
"""
Counts the number of non-zero values in the input tensor along the given dims.
If no dim is specified then all non-zeros in the tensor are counted.
Refer to :func:`mindspore.ops.count_nonzero` for more detail.
Supported Platforms:
``CPU``
Examples:
>>> x = Tensor([[0, 0, 1], [1, 1, 2], [0, 0, 1]], dtype=mindspore.int64)
>>> countnonzero = ops.CountNonZero(dims=[1])
>>> y = countnonzero(x)
>>> print(y)
[1 3 1]
"""
@prim_attr_register
def __init__(self, dims=None):
dims = [] if dims is None else dims
self.init_prim_io_names(inputs=['x'], outputs=['y'])
validator.check_value_type('dims', dims, [int, list, tuple], "CountNonZero")
if isinstance(dims, (list, tuple)):
for i, each in enumerate(dims):
validator.check_value_type(f'dims[{i}]', each, [int], "CountNonZero")
self.dims = dims
self.add_prim_attr("dims", self.dims)

View File

@ -405,6 +405,17 @@ class MaskedFillFunc(Cell):
return y
class CountNonZeroFunc(Cell):
def __init__(self, dims):
super(CountNonZeroFunc, self).__init__()
self.countnonzero_ = ops.function.array_func.count_nonzero
self.dims = dims
def construct(self, x):
y = self.countnonzero_(x, self.dims)
return y
test_case_array_ops = [
('CustNet1', {
'block': CustNet1(),
@ -476,6 +487,10 @@ test_case_array_ops = [
Tensor(np.array([[True, True, False]]), mstype.bool_),
Tensor(5.0, mstype.float32)],
'desc_bprop': [Tensor(np.array([[3.0, 2.0, 1.0]]), mstype.float32)]}),
('CountNonZero', {
'block': CountNonZeroFunc(dims=()),
'desc_inputs': [Tensor(np.array([[3.0, 2.0, 1.0]]), mstype.float32)],
'desc_bprop': [Tensor(np.array([[3.0, 2.0, 1.0]]), mstype.float32)]}),
('TensorShapeNet', {'block': TensorShapeNet(), 'desc_inputs': [Tensor(np.array([1, 2, 3, 2]), ms.int32)]})
]