modify format

This commit is contained in:
huodagu 2022-11-07 10:52:38 +08:00
parent 413dba1523
commit 3b6b1e8678
10 changed files with 14 additions and 9 deletions

View File

@ -1,7 +1,7 @@
mindspore.ops.CheckValid
=========================
.. py:class:: mindspore.ops.CheckValide()
.. py:class:: mindspore.ops.CheckValid()
检查边界框。

View File

@ -13,7 +13,7 @@ mindspore.ops.SparseApplyFtrlV2
- **l2** (float) - L2正则化必须大于或等于零。
- **l2_shrinkage** (float) - L2收缩正则化。
- **lr_power** (float) - 在训练期间控制降低学习率,必须小于或等于零。如果 `lr_power` 为零,则使用固定学习率。
- **use_locking** (bool) - 如果为True`var``accum` 将受到保护不被更新。默认值False。
- **use_locking** (bool, 可选) - 如果为True`var``accum` 将受到保护不被更新。默认值False。
输入:
- **var** (Parameter) - 要更新的权重。数据类型必须为float16或float32。shape为 :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。

View File

@ -30,4 +30,6 @@ mindspore.ops.gelu
Tensor具有与 `input_x` 相同的数据类型和shape。
异常:
- **TypeError** - 如果 `input_x` 的数据类型不是Tensor。
- **TypeError** - `input_x` 的数据类型既不是float16、float32或者float64。
- **ValueError** - 如果 `approximate` 的值既不是 `none` 也不是 `tanh`

View File

@ -14,7 +14,7 @@ mindspore.ops.softmax
参数:
- **x** (Tensor) - Softmax的输入任意维度的Tensor。其数据类型为float16或float32。
- **axis** (Union[int, tuple[int]]) - 指定Softmax操作的轴。默认值-1。
- **axis** (Union[int, tuple[int]], 可选) - 指定Softmax操作的轴。默认值-1。
返回:
Tensor数据类型和shape与 `x` 相同。

View File

@ -13,9 +13,10 @@ mindspore.ops.unfold
- **kernel_size** (Union[int, tuple[int], list[int]]) - 滑窗大小。如果是两个int则分别为滑窗的高度和宽度如果是一个int则高度和宽度均为这个int值。是一个必要参数。
- **dilation** (Union[int, tuple[int], list[int]],可选) - 窗口的空洞卷积的扩充率如果是两个int则分别作用于滑窗的高度和宽度如果是一个int则这个值作用于化窗的高度和宽度。默认值1。
- **padding** (Union[int, tuple[int], list[int]],可选) - 滑窗的隐式零填充量。为单个int或者包含一/二/四个整数的tuple/list。默认值: 0。
- 如果是一个int, 则pad_height = pad_width。
- 如果是两个int, 则pad_height = padding[0], pad_width = padding[1]。
- 如果是四个int, 则padding = [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]。
- 如果是一个int, 则pad_height = pad_width。
- 如果是两个int, 则pad_height = padding[0], pad_width = padding[1]。
- 如果是四个int, 则padding = [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]。
- **stride** (Union[int, tuple[int], list[int]],可选) - 空间维度上滑动的步长如果是两个int则分别为滑窗的高和宽方向上的步长如果是一个int则高和宽方向上的步长均为这个int值。默认值: 1。
返回:

View File

@ -3416,6 +3416,7 @@ def std(input_x, axis=(), unbiased=True, keep_dims=False):
Returns:
A tuple of 2 Tensors (output_std, output_mean) containing the standard deviation and mean.
Suppose the shape of `input_x` is :math:`(x_0, x_1, ..., x_R)`:
- If `axis` is () and `keep_dims` is set to False, returns a 0-D Tensor, indicating
the standard deviation of all elements in `input_x`.
- If `axis` is int 1 and `keep_dims` is set to False, then the returned Tensor

View File

@ -3948,6 +3948,7 @@ def elu(input_x, alpha=1.0):
\alpha(e^{x} - 1) & \text{if } x \le 0\\
x & \text{if } x \gt 0\\
\end{array}\right.
Where :math:`x` is the element of input Tensor, :math:`\alpha` is param `alpha`,
it determines the smoothness of ELU.
The picture about ELU looks like this `ELU <https://en.wikipedia.org/wiki/

View File

@ -64,7 +64,7 @@ class ScalarSummary(Primitive):
Raises:
TypeError: If `name` is not a str.
TypeError: If `value` is not a Tensor.
TypeError: If dim of `value` is greater than 1.
ValueError: If dim of `value` is greater than 1.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

View File

@ -6832,7 +6832,7 @@ class SparseApplyFtrl(Primitive):
l2 (float): l2 regularization strength, must be greater than or equal to zero.
lr_power (float): Learning rate power controls how the learning rate decreases during training,
must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero.
use_locking (bool): Use locks for updating operation if true . Default: False.
use_locking (bool, optional): Use locks for updating operation if true . Default: False.
Inputs:
- **var** (Parameter) - The variable to be updated. The data type must be float16 or float32.

View File

@ -412,7 +412,7 @@ class SparseToDense(Primitive):
- **sparse_shape** (tuple(int)) - A positive int tuple which specifies the shape of sparse tensor,
should have 2 elements, represent sparse tensor shape is :math:`(N, C)`.
Returns:
Outputs:
Tensor, converted from sparse tensor. The dtype is same as `values`, and the shape is `sparse_shape`.
Raises: