!4637 [MS][LITE][Develop] add prelu to opencl
Merge pull request !4637 from liuzhongkai/prelu
This commit is contained in:
commit
39c81dafb8
|
@ -0,0 +1,130 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
*
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "src/runtime/kernel/opencl/kernel/prelu.h"
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
#include "src/runtime/kernel/opencl/cl/fp32/activation.cl.inc"
|
||||
#include "src/runtime/kernel/arm/nnacl/prelu_parameter.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kGPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Prelu;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int PReluOpenCLKernel::Init() {
|
||||
if (in_tensors_[0]->shape().size() != 4) {
|
||||
MS_LOG(ERROR) << "PRelu only support dim=4, but your dim=" << in_tensors_[0]->shape().size();
|
||||
return RET_ERROR;
|
||||
}
|
||||
std::set<std::string> build_options;
|
||||
std::string source = activation_source_fp32;
|
||||
std::string program_name = "PRelu";
|
||||
std::string kernel_name = "ReluScalar";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
ocl_runtime->LoadSource(program_name, source);
|
||||
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
ori_format_ = out_tensors_[0]->GetFormat();
|
||||
out_tensors_[0]->SetFormat(schema::Format_NHWC4);
|
||||
MS_LOG(DEBUG) << program_name << " init Done!";
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PReluOpenCLKernel::Run() {
|
||||
MS_LOG(DEBUG) << op_parameter_->name_ << " Running!";
|
||||
int N = in_tensors_[0]->shape()[0];
|
||||
int H = in_tensors_[0]->shape()[1];
|
||||
int W = in_tensors_[0]->shape()[2];
|
||||
int C = in_tensors_[0]->shape()[3];
|
||||
cl_int4 input_shape = {N, H, W, C};
|
||||
if (in_tensors_[1]->ElementsNum() < 1) {
|
||||
MS_LOG(ERROR) << "PRelu weight size must be greater than 1! But your weight size is "
|
||||
<< in_tensors_[1]->ElementsNum();
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
int arg_idx = 0;
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_idx++, input_shape);
|
||||
ocl_runtime->SetKernelArg(kernel_, arg_idx++, reinterpret_cast<float *>(in_tensors_[1]->Data())[0]);
|
||||
|
||||
std::vector<size_t> local = {1, 1};
|
||||
std::vector<size_t> global = {static_cast<size_t>(H), static_cast<size_t>(W)};
|
||||
auto ret = ocl_runtime->RunKernel(kernel_, global, local, nullptr);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Run kernel " << op_parameter_->name_ << " error.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PReluOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
||||
int H = in_tensors_[0]->shape()[1];
|
||||
int W = in_tensors_[0]->shape()[2];
|
||||
int C = in_tensors_[0]->shape()[3];
|
||||
|
||||
#ifdef ENABLE_FP16
|
||||
size_t img_dtype = CL_HALF_FLOAT;
|
||||
#else
|
||||
size_t img_dtype = CL_FLOAT;
|
||||
#endif
|
||||
|
||||
img_size->clear();
|
||||
img_size->push_back(W * UP_DIV(C, C4NUM));
|
||||
img_size->push_back(H);
|
||||
img_size->push_back(img_dtype);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *OpenCLPReluKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
const kernel::KernelKey &desc, const lite::PrimitiveC *primitive) {
|
||||
if (inputs.size() == 0) {
|
||||
MS_LOG(ERROR) << "Input data size must be greater than 0, but your size is " << inputs.size();
|
||||
return nullptr;
|
||||
}
|
||||
if (inputs[0]->shape()[0] > 1) {
|
||||
MS_LOG(ERROR) << "Init PRelu kernel failed: Unsupported multi-batch.";
|
||||
return nullptr;
|
||||
}
|
||||
auto *kernel = new (std::nothrow) PReluOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init PRelu kernel failed!";
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Prelu, OpenCLPReluKernelCreator)
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,46 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_PRELU_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_PRELU_H_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "src/ir/tensor.h"
|
||||
#include "src/runtime/kernel/opencl/opencl_kernel.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
class PReluOpenCLKernel : public OpenCLKernel {
|
||||
public:
|
||||
explicit PReluOpenCLKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs)
|
||||
: OpenCLKernel(parameter, inputs, outputs) {}
|
||||
~PReluOpenCLKernel() override{};
|
||||
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
int GetImageSize(size_t idx, std::vector<size_t> *img_size) override;
|
||||
|
||||
private:
|
||||
cl::Kernel kernel_;
|
||||
};
|
||||
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_PRELU_H_
|
|
@ -151,6 +151,7 @@ if (SUPPORT_GPU)
|
|||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/reshape.cc
|
||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/to_format.cc
|
||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/caffe_prelu.cc
|
||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/prelu.cc
|
||||
)
|
||||
endif()
|
||||
### minddata lite
|
||||
|
@ -327,6 +328,7 @@ if (SUPPORT_GPU)
|
|||
${TEST_DIR}/ut/src/runtime/kernel/opencl/activation_tests.cc
|
||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/to_format_tests.cc
|
||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/caffe_prelu_tests.cc
|
||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/prelu_tests.cc
|
||||
)
|
||||
endif()
|
||||
|
||||
|
|
|
@ -0,0 +1,185 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
|
||||
#include "utils/log_adapter.h"
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/src/common/file_utils.h"
|
||||
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/prelu.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/prelu_parameter.h"
|
||||
|
||||
using mindspore::kernel::LiteKernel;
|
||||
using mindspore::kernel::PReluOpenCLKernel;
|
||||
using mindspore::kernel::SubGraphOpenCLKernel;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
|
||||
namespace mindspore {
|
||||
class TestPReluOpenCL : public mindspore::CommonTest {};
|
||||
|
||||
void LoadDataPRelu(void *dst, size_t dst_size, const std::string &file_path) {
|
||||
if (file_path.empty()) {
|
||||
memset(dst, 0x00, dst_size);
|
||||
} else {
|
||||
auto src_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_path.c_str(), &dst_size));
|
||||
memcpy(dst, src_data, dst_size);
|
||||
}
|
||||
}
|
||||
|
||||
void CompareOutPRelu(lite::tensor::Tensor *output_tensor, const std::string &standard_answer_file) {
|
||||
auto *output_data = reinterpret_cast<float *>(output_tensor->Data());
|
||||
size_t output_size = output_tensor->Size();
|
||||
auto expect_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(standard_answer_file.c_str(), &output_size));
|
||||
constexpr float atol = 0.0002;
|
||||
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
|
||||
if (std::fabs(output_data[i] - expect_data[i]) > atol) {
|
||||
printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]);
|
||||
printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]);
|
||||
printf("error at idx[%d] expect=%.3f output=%.3f\n\n\n", i, expect_data[i], output_data[i]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
printf("compare success!\n");
|
||||
printf("compare success!\n");
|
||||
printf("compare success!\n\n\n");
|
||||
}
|
||||
|
||||
TEST_F(TestPReluOpenCL, PReluFp32_dim4) {
|
||||
std::string in_file = "/data/local/tmp/in_data.bin";
|
||||
std::string standard_answer_file = "/data/local/tmp/leaky_relu.bin";
|
||||
MS_LOG(INFO) << "-------------------->> Begin test PRelu!";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
ocl_runtime->Init();
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
|
||||
MS_LOG(INFO) << "Init tensors.";
|
||||
std::vector<int> input_shape = {1, 4, 3, 8};
|
||||
|
||||
auto data_type = kNumberTypeFloat32;
|
||||
auto tensor_type = schema::NodeType_ValueNode;
|
||||
auto input_tensor =
|
||||
new (std::nothrow) lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensor_type);
|
||||
if (input_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new input_tensor error!";
|
||||
return;
|
||||
}
|
||||
|
||||
auto output_tensor =
|
||||
new (std::nothrow) lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensor_type);
|
||||
if (output_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new output_tensor error";
|
||||
delete input_tensor;
|
||||
return;
|
||||
}
|
||||
|
||||
auto weight_tensor =
|
||||
new (std::nothrow) lite::tensor::Tensor(data_type, std::vector<int>{1}, schema::Format_NHWC, tensor_type);
|
||||
if (weight_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new weight_tensor error";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
return;
|
||||
}
|
||||
std::vector<lite::tensor::Tensor *> inputs{input_tensor, weight_tensor};
|
||||
std::vector<lite::tensor::Tensor *> outputs{output_tensor};
|
||||
|
||||
// freamework to do!!! allocate memory by hand
|
||||
inputs[0]->MallocData(allocator);
|
||||
inputs[1]->MallocData(allocator);
|
||||
|
||||
MS_LOG(INFO) << "initialize input data";
|
||||
LoadDataPRelu(input_tensor->Data(), input_tensor->Size(), in_file);
|
||||
auto weight_data = reinterpret_cast<float *>(weight_tensor->Data());
|
||||
weight_data[0] = 0.3;
|
||||
auto *input_data = reinterpret_cast<float *>(inputs[0]->Data());
|
||||
PrintData("PRelu input data", input_data, inputs[0]->ElementsC4Num());
|
||||
|
||||
auto param = new (std::nothrow) PreluParameter();
|
||||
if (param == nullptr) {
|
||||
MS_LOG(ERROR) << "new PreluParameter error";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete weight_tensor;
|
||||
return;
|
||||
}
|
||||
auto prelu_kernel =
|
||||
new (std::nothrow) kernel::PReluOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||
if (prelu_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new PReluOpenCLKernel error";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete weight_tensor;
|
||||
delete param;
|
||||
return;
|
||||
}
|
||||
auto ret = prelu_kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init prelu kernel error";
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "initialize sub_graph";
|
||||
std::vector<kernel::LiteKernel *> kernels{prelu_kernel};
|
||||
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel({input_tensor}, outputs, kernels, kernels, kernels);
|
||||
if (sub_graph == nullptr) {
|
||||
MS_LOG(ERROR) << "Create kernel sub_graph error";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete weight_tensor;
|
||||
delete param;
|
||||
delete prelu_kernel;
|
||||
return;
|
||||
}
|
||||
ret = sub_graph->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init sub graph error";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete weight_tensor;
|
||||
delete param;
|
||||
delete prelu_kernel;
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
|
||||
ret = sub_graph->Run();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Run sub graph error";
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete weight_tensor;
|
||||
delete param;
|
||||
delete prelu_kernel;
|
||||
delete sub_graph;
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "PRelu==================output data================";
|
||||
auto *output_data = reinterpret_cast<float *>(outputs[0]->Data());
|
||||
PrintData("output_data", output_data, outputs[0]->ElementsC4Num());
|
||||
CompareOutPRelu(output_tensor, standard_answer_file);
|
||||
delete input_tensor;
|
||||
delete output_tensor;
|
||||
delete weight_tensor;
|
||||
delete param;
|
||||
delete prelu_kernel;
|
||||
delete sub_graph;
|
||||
lite::opencl::OpenCLRuntime::DeleteInstance();
|
||||
}
|
||||
} // namespace mindspore
|
Loading…
Reference in New Issue