!40453 correct the errors on webpage

Merge pull request !40453 from 宦晓玲/code_docs_0816
This commit is contained in:
i-robot 2022-08-16 09:30:20 +00:00 committed by Gitee
commit 39c5bf5d3a
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
14 changed files with 39 additions and 35 deletions

View File

@ -16,7 +16,7 @@ mindspore.COOTensor
[0, 0, 0, 0]]
.. note::
这是一个实验特性在未来可能会发生API的变化。目前COOTensor中相同索引的值不会进行合并。
这是一个实验特性在未来可能会发生API的变化。目前COOTensor中相同索引的值不会进行合并。如果索引中包含界外值,则得出未定义结果。
参数:
- **indices** (Tensor) - 形状为 `[N, ndims]` 的二维整数张量其中N和ndims分别表示稀疏张量中 `values` 的数量和COOTensor维度的数量。目前 `ndims` 只能为2。请确保indices的值在所给shape范围内。

View File

@ -133,7 +133,7 @@ mindspore.set_context
- **compile_cache_path** (str) - 保存前端图编译缓存的路径。默认值:"."。如果目录不存在,系统会自动创建这个目录。缓存会被保存到如下目录: `compile_cache_path/rank_${rank_id}/``rank_id` 是集群上当前设备的ID。
- **runtime_num_threads** (int) - 运行时actor和CPU算子核使用的线程池线程数必须大于0。默认值为30如果同时运行多个进程应将该值设置得小一些以避免线程争用。
- **disable_format_transform** (bool) - 表示是否取消NCHW到NHWC的自动格式转换功能。当fp16的网络性能不如fp32的时可以设置 `disable_format_transform` 为True以尝试提高训练性能。默认值False。
- **support_binary** (bool) - 是否支持在图形模式下运行.pyc或.so。如果要支持在图形模式下运行.so或.pyc可将`support_binary`置为True并运行一次.py文件从而将接口源码保存到接口定义.py文件中因此要保证该文件可写。然后将.py文件编译成.pyc或.so文件即可在图模式下运行。
- **support_binary** (bool) - 是否支持在图形模式下运行.pyc或.so。如果要支持在图形模式下运行.so或.pyc可将 `support_binary` 置为True并运行一次.py文件从而将接口源码保存到接口定义.py文件中因此要保证该文件可写。然后将.py文件编译成.pyc或.so文件即可在图模式下运行。
异常:
- **ValueError** - 输入key不是上下文中的属性。

View File

@ -11,7 +11,7 @@ mindspore.ops.amax
- **keep_dims** (bool) - 如果为True则保留缩小的维度大小为1。否则移除维度。默认值False。
返回:
Tensor。
Tensor。
- 如果 `axis` 为(),且 `keep_dims` 为False则输出一个0维Tensor表示输入Tensor中所有元素的最大值。
- 如果 `axis` 为int取值为1并且 `keep_dims` 为False则输出的shape为 :math:`(x_0, x_2, ..., x_R)`

View File

@ -10,9 +10,6 @@
.. math::
(x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R)
.. note::
`axis` 的取值范围为 :math:`[-dims, dims - 1]``dims``input_x` 的维度长度。
参数:
- **input_x** (tuple, list) - 输入为Tensor组成的tuple或list。假设在这个tuple或list中有两个Tensor`x1``x2` 。要在0轴方向上执行 `Concat` 除0轴外其他轴的shape都应相等:math:`x1.shape[1] = x2.shape[1]x1.shape[2] = x2.shape[2]...x1.shape[R] = x2.shape[R]` ,其中 :math:`R` 表示最后一个轴。
- **axis** (int) - 表示指定的轴,取值范围是 :math:`[-R, R)` 。默认值0。

View File

@ -3,17 +3,17 @@ mindspore.ops.csr_softmax
.. py:function:: mindspore.ops.csr_softmax(logits, dtype)
计算 CSRTensorMatrix 的 softmax 。
计算 CSRTensorMatrix 的 softmax 。
参数:
- **logits** CSRTensor - 输入稀疏的 CSRTensor。
- **dtype** dtype - 输入的数据类型。
参数:
- **logits** CSRTensor - 输入稀疏的 CSRTensor。
- **dtype** dtype - 输入的数据类型。
返回:
- **CSRTensor** CSRTensor - 一个 csr_tensor 包含
- **indptr** - 指示每行中非零值的起始点和结束点。
- **indices** - 输入中所有非零值的列位置。
- **values** - 稠密张量的非零值。
- **shape** - csrtensor 的形状.
返回:
- **CSRTensor** CSRTensor - 一个 csr_tensor 包含
- **indptr** - 指示每行中非零值的起始点和结束点。
- **indices** - 输入中所有非零值的列位置。
- **values** - 稠密张量的非零值。
- **shape** - csrtensor 的形状.

View File

@ -9,7 +9,7 @@ mindspore.ops.grad
1. 对输入求导,此时 `grad_position` 非None`weights` 是None;
2. 对网络变量求导,此时 `grad_position` 是None`weights` 非None;
3. 同时对输入和网络变量求导,此时 `grad_position``weights` 都非None。
3. 同时对输入和网络变量求导,此时 `grad_position` `weights` 都非None。
参数:
- **fn** (Union[Cell, Function]) - 待求导的函数或网络。

View File

@ -16,7 +16,7 @@ mindspore.ops.log_softmax
- **logits** (Tensor) - shape :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度其数据类型为float16或float32。
- **axis** (int) - 指定进行运算的轴。默认值:-1。
输出
返回
Tensor数据类型和shape与 `logits` 相同。
异常:

View File

@ -11,7 +11,7 @@ mindspore.ops.prod
- **keep_dims** (bool) - 如果为True则保留缩小的维度大小为1。否则移除维度。默认值False。
返回:
Tensor。
Tensor。
- 如果 `axis` 为(),且 `keep_dims` 为False则输出一个0维Tensor表示输入Tensor中所有元素的乘积。
- 如果 `axis` 为int取值为1并且 `keep_dims` 为False则输出的shape为 :math:`(x_0, x_2, ..., x_R)`

View File

@ -1,7 +1,7 @@
mindspore.ops.softmax
=====================
.. py::: function.ops.softmax(x, axis=-1)
.. py:function:: mindspore.ops.softmax(x, axis=-1)
Softmax函数。

View File

@ -686,7 +686,7 @@ def get_auto_offload():
Returns:
bool, Whether the automatic offload feature is enabled.
Example:
Examples:
>>> # Get the global configuration of the automatic offload feature.
>>> auto_offload = ds.config.get_auto_offload()
"""

View File

@ -1061,7 +1061,8 @@ def slice(input_x, begin, size):
The slice `begin` represents the offset in each dimension of `input_x`,
The slice `size` represents the size of the output tensor.
Note that `begin` is zero-based and `size` is one-based.
Note:
`begin` is zero-based and `size` is one-based.
If `size[i]` is -1, all remaining elements in dimension i are included in the slice.
This is equivalent to setting :math:`size[i] = input_x.shape(i) - begin[i]`.

View File

@ -2662,11 +2662,6 @@ def equal(x, y):
r"""
Computes the equivalence between two tensors element-wise.
Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
The inputs must be two tensors or one tensor and one scalar.
When the inputs are two tensors, the shapes of them could be broadcast.
When the inputs are one tensor and one scalar, the scalar could only be a constant.
.. math::
out_{i} =\begin{cases}
@ -2674,6 +2669,12 @@ def equal(x, y):
& \text{False, if } x_{i} \ne y_{i}
\end{cases}
Note:
- Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors, the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar, the scalar could only be a constant.
Args:
x (Union[Tensor, Number]): The first input is a number or
a tensor whose data type is number.
@ -3036,12 +3037,13 @@ def minimum(x, y):
r"""
Computes the minimum of input tensors element-wise.
Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
The inputs must be two tensors or one tensor and one scalar.
When the inputs are two tensors, dtypes of them cannot be bool at the same time.
When the inputs are one tensor and one scalar, the scalar could only be a constant.
Shapes of them are supposed to be broadcast.
If one of the elements being compared is a NaN, then that element is returned.
Note:
- Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors, dtypes of them cannot be bool at the same time.
- When the inputs are one tensor and one scalar, the scalar could only be a constant.
- Shapes of them are supposed to be broadcast.
- If one of the elements being compared is a NaN, then that element is returned.
.. math::
output_i = min(x_i, y_i)

View File

@ -347,7 +347,7 @@ def random_poisson(shape, rate, seed=None, dtype=mstype.float32):
mindspore.dtype.float64, mindspore.dtype.float32 or mindspore.dtype.float16. Default: mindspore.dtype.float32.
Returns:
A Tensor whose shape is `mindspore.concat([`shape`, mindspore.shape(`rate`)], axis=0)` and data type is equal to
A Tensor whose shape is `mindspore.concat(['shape', mindspore.shape('rate')], axis=0)` and data type is equal to
argument `dtype`.
Raises:

View File

@ -634,6 +634,7 @@ class ReduceMean(_Reduce):
TypeError: If `keep_dims` is not a bool.
TypeError: If `x` is not a Tensor.
TypeError: If `axis` is not one of the following: int, tuple or list.
ValueError: If `axis` is out of range.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
@ -918,6 +919,7 @@ class ReduceMax(_Reduce):
TypeError: If `keep_dims` is not a bool.
TypeError: If `x` is not a Tensor.
TypeError: If `axis` is not one of the following: int, tuple or list.
ValueError: If `axis` is out of range.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
@ -1004,6 +1006,7 @@ class ReduceMin(_Reduce):
TypeError: If `keep_dims` is not a bool.
TypeError: If `x` is not a Tensor.
TypeError: If `axis` is not one of the following: int, tuple or list.
ValueError: If `axis` is out of range.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
@ -1126,6 +1129,7 @@ class ReduceProd(_Reduce):
TypeError: If `keep_dims` is not a bool.
TypeError: If `x` is not a Tensor.
TypeError: If `axis` is not one of the following: int, tuple or list.
ValueError: If `axis` is out of range.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``