!1488 add vm ops: Asin, AsinGrad, Asinh, AsinhGrad
Merge pull request !1488 from fangzehua/fzh_edit
This commit is contained in:
commit
39c1966593
|
@ -770,6 +770,28 @@ def get_bprop_sin(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Asin)
|
||||
def get_bprop_asin(self):
|
||||
"""Grad definition for `Asin` operation."""
|
||||
input_grad = G.AsinGrad()
|
||||
|
||||
def bprop(x, out, dout):
|
||||
dx = input_grad(x, dout)
|
||||
return (dx,)
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Asinh)
|
||||
def get_bprop_asinh(self):
|
||||
"""Grad definition for `Asinh` operation."""
|
||||
input_grad = G.AsinhGrad()
|
||||
|
||||
def bprop(x, out, dout):
|
||||
dx = input_grad(out, dout)
|
||||
return (dx,)
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Cos)
|
||||
def get_bprop_cos(self):
|
||||
"""Grad definition for `Cos` operation."""
|
||||
|
|
|
@ -208,3 +208,7 @@ from .bitwise_xor import bitwise_xor_op_info
|
|||
from .reduce_all import _reduce_all_tbe
|
||||
from .sparse_apply_adagrad import _sparse_apply_adagrad_tbe
|
||||
from .unsorted_segment_min import _unsorted_segment_min_tbe
|
||||
from .asin import _asin_tbe
|
||||
from .asin_grad import _asin_grad_tbe
|
||||
from .asinh import _asinh_tbe
|
||||
from .asinh_grad import _asinh_grad_tbe
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Asin op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
asin_op_info = TBERegOp("Asin") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("asin.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("asin") \
|
||||
.partial_flag(True) \
|
||||
.op_pattern("formatAgnostic") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(asin_op_info)
|
||||
def _asin_tbe():
|
||||
"""Asin TBE register"""
|
||||
return
|
|
@ -0,0 +1,43 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""AsinGrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
asin_grad_op_info = TBERegOp("AsinGrad") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("asin_grad.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("asin_grad") \
|
||||
.partial_flag(True) \
|
||||
.input(0, "y", None, "required", "all") \
|
||||
.input(1, "dy", None, "required", "all") \
|
||||
.output(0, "z", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_FracZ) \
|
||||
.dtype_format(DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.dtype_format(DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_FracZ) \
|
||||
.dtype_format(DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(asin_grad_op_info)
|
||||
def _asin_grad_tbe():
|
||||
"""AsinGrad TBE register"""
|
||||
return
|
|
@ -0,0 +1,37 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Asin op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
asinh_op_info = TBERegOp("Asinh") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("asinh.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("asinh") \
|
||||
.partial_flag(True) \
|
||||
.op_pattern("formatAgnostic") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(asinh_op_info)
|
||||
def _asinh_tbe():
|
||||
"""Asinh TBE register"""
|
||||
return
|
|
@ -0,0 +1,43 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""AsinhGrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
asinh_grad_op_info = TBERegOp("AsinhGrad") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("asinh_grad.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("asinh_grad") \
|
||||
.partial_flag(True) \
|
||||
.input(0, "y", False, "required", "all") \
|
||||
.input(1, "dy", False, "required", "all") \
|
||||
.output(0, "z", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_FracZ) \
|
||||
.dtype_format(DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.dtype_format(DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_FracZ) \
|
||||
.dtype_format(DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(asinh_grad_op_info)
|
||||
def _asinh_grad_tbe():
|
||||
"""AsinhGrad TBE register"""
|
||||
return
|
|
@ -39,7 +39,8 @@ from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSumm
|
|||
TensorSummary, HistogramSummary, Print)
|
||||
from .control_ops import ControlDepend, GeSwitch, Merge
|
||||
from .inner_ops import ScalarCast
|
||||
from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, BitwiseXor,
|
||||
|
||||
from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, BitwiseXor,
|
||||
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
|
||||
Cos, Div, Equal, EqualCount, Exp, Erf, Erfc, Floor, FloorDiv, FloorMod, Acosh,
|
||||
Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd,
|
||||
|
@ -239,6 +240,7 @@ __all__ = [
|
|||
'FloorDiv',
|
||||
'FloorMod',
|
||||
'Acosh',
|
||||
'Asinh',
|
||||
"PReLU",
|
||||
"Cos",
|
||||
"ACos",
|
||||
|
@ -249,6 +251,7 @@ __all__ = [
|
|||
'AssignAdd',
|
||||
'AssignSub',
|
||||
"Sin",
|
||||
"Asin",
|
||||
"LSTM",
|
||||
"Abs",
|
||||
"BinaryCrossEntropy",
|
||||
|
|
|
@ -76,6 +76,45 @@ class AcoshGrad(PrimitiveWithInfer):
|
|||
return x
|
||||
|
||||
|
||||
class AsinGrad(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes AsinGrad of input element-wise.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same type as input.
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""Init AsinGrad"""
|
||||
|
||||
def infer_shape(self, x, dout):
|
||||
validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name)
|
||||
return x
|
||||
|
||||
def infer_dtype(self, x, dout):
|
||||
args = {"x": x, "dout": dout}
|
||||
validator.check_tensor_type_same(args, mstype.number_type, self.name)
|
||||
return x
|
||||
|
||||
|
||||
class AsinhGrad(PrimitiveWithInfer):
|
||||
"""Performs grad of Asinh operation."""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init AsinhGrad"""
|
||||
|
||||
def infer_shape(self, x, dout):
|
||||
validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name)
|
||||
return x
|
||||
|
||||
def infer_dtype(self, x, dout):
|
||||
args = {"x": x, "dout": dout}
|
||||
validator.check_tensor_type_same(args, mstype.number_type, self.name)
|
||||
return x
|
||||
|
||||
|
||||
class BatchNormGrad(PrimitiveWithInfer):
|
||||
"""Performs grad of BatchNorm operation."""
|
||||
|
||||
|
|
|
@ -1336,8 +1336,7 @@ class Acosh(PrimitiveWithInfer):
|
|||
Compute inverse hyperbolic cosine of x element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`,
|
||||
and the data type of 'input_x' is number, the element in 'input_x' should be greater than or equal to 1.
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape as `input_x`.
|
||||
|
@ -1352,12 +1351,42 @@ class Acosh(PrimitiveWithInfer):
|
|||
def __init__(self):
|
||||
"""init Acosh"""
|
||||
|
||||
def infer_shape(self, x):
|
||||
return x
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x):
|
||||
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.name)
|
||||
return x
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class Asinh(PrimitiveWithInfer):
|
||||
"""
|
||||
Compute inverse hyperbolic cosine of x element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> asinh = P.Asinh()
|
||||
>>> input_x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32)
|
||||
>>> output = asinh(input_x)
|
||||
[-2.3212, 1.1976, 1.8184, 5.2983]
|
||||
"""
|
||||
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init Asinh"""
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class _LogicBinaryOp(_BinaryOp):
|
||||
|
@ -1927,12 +1956,12 @@ class Cos(PrimitiveWithInfer):
|
|||
def __init__(self):
|
||||
"""init Cos"""
|
||||
|
||||
def infer_shape(self, x):
|
||||
return x
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x):
|
||||
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.name)
|
||||
return x
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class ACos(PrimitiveWithInfer):
|
||||
|
@ -1955,12 +1984,12 @@ class ACos(PrimitiveWithInfer):
|
|||
def __init__(self):
|
||||
"""init ACos"""
|
||||
|
||||
def infer_shape(self, x):
|
||||
return x
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x):
|
||||
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.name)
|
||||
return x
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class Sin(PrimitiveWithInfer):
|
||||
|
@ -1983,12 +2012,41 @@ class Sin(PrimitiveWithInfer):
|
|||
def __init__(self):
|
||||
"""Init Sin."""
|
||||
|
||||
def infer_shape(self, x):
|
||||
return x
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x):
|
||||
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.name)
|
||||
return x
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class Asin(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes arccosine of input element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> asin = P.Asin()
|
||||
>>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
||||
>>> output = asin(input_x)
|
||||
[0.8331, 0.0400, 0.3047, 0.5944]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init Asin"""
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class NMSWithMask(PrimitiveWithInfer):
|
||||
|
|
|
@ -369,6 +369,14 @@ test_case_math_ops = [
|
|||
'block': P.Sin(),
|
||||
'desc_inputs': [[2, 3]],
|
||||
'desc_bprop': [[2, 3]]}),
|
||||
('Asin', {
|
||||
'block': P.Asin(),
|
||||
'desc_inputs': [[2, 3]],
|
||||
'desc_bprop': [[2, 3]]}),
|
||||
('Asinh', {
|
||||
'block': P.Asinh(),
|
||||
'desc_inputs': [[3, 4, 5]],
|
||||
'desc_bprop': [[3, 4, 5]]}),
|
||||
('Reciprocal', {
|
||||
'block': P.Reciprocal(),
|
||||
'desc_inputs': [[2, 3, 3, 5]],
|
||||
|
|
Loading…
Reference in New Issue