while cases 2
This commit is contained in:
parent
65479c7646
commit
39c0a5b7da
|
@ -0,0 +1,69 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
for _ in range(0, self.max_cycles):
|
||||||
|
out = x * y + out
|
||||||
|
i = self.i
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
|
@ -0,0 +1,71 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
i = self.i
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
i = self.i
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
|
@ -0,0 +1,74 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
i = self.i
|
||||||
|
while i < self.max_cycles:
|
||||||
|
j = self.i
|
||||||
|
while j < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
j = j + 1
|
||||||
|
i = i + 1
|
||||||
|
i = self.i
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
|
@ -0,0 +1,72 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
for _ in range(0, self.max_cycles):
|
||||||
|
j = self.i
|
||||||
|
while j < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
j = j + 1
|
||||||
|
i = self.i
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
Loading…
Reference in New Issue