modify format1115
This commit is contained in:
parent
4b98ca7361
commit
38bf0b73ba
|
@ -614,7 +614,7 @@ Parameter操作算子
|
|||
自定义算子
|
||||
-------------
|
||||
|
||||
.. mscnautosummary::
|
||||
.. mscnplatformautosummary::
|
||||
:toctree: ops
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
|
|
@ -3,7 +3,4 @@ mindspore.Tensor.negative
|
|||
|
||||
.. py:method:: mindspore.Tensor.negative()
|
||||
|
||||
逐元素计算当前Tensor的相反数。
|
||||
|
||||
返回:
|
||||
Tensor,每个元素是当前Tensor的相反数。
|
||||
详情请参考 :func:`mindspore.ops.negative`。
|
||||
|
|
|
@ -26,7 +26,7 @@ mindspore.nn.probability.distribution.HalfNormal
|
|||
- **ValueError** - `sd` 中元素不大于0。
|
||||
- **TypeError** - `dtype` 不是float的子类。
|
||||
|
||||
.. py:method:: log_prob(value, mean, sd)
|
||||
.. py:method:: log_prob(value, mean=None, sd=None)
|
||||
|
||||
计算给定值对应的概率的对数。
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@ mindspore.nn.probability.distribution.Laplace
|
|||
- **ValueError** - `sd` 中元素不大于0。
|
||||
- **TypeError** - `dtype` 不是float的子类。
|
||||
|
||||
.. py:method:: log_prob(value, mean, sd)
|
||||
.. py:method:: log_prob(value, mean=None, sd=None)
|
||||
|
||||
计算给定值对应的概率的对数。
|
||||
|
||||
|
|
|
@ -30,7 +30,7 @@ mindspore.nn.probability.distribution.StudentT
|
|||
- **ValueError** - `sd` 中元素不大于0。
|
||||
- **TypeError** - `dtype` 不是float的子类。
|
||||
|
||||
.. py:method:: log_prob(value, df, mean, sd)
|
||||
.. py:method:: log_prob(value, df=None, mean=None, sd=None)
|
||||
|
||||
计算给定值对应的概率的对数。
|
||||
|
||||
|
|
|
@ -5,12 +5,12 @@ mindspore.ops.DiagPart
|
|||
|
||||
返回输入的对角线部分。
|
||||
|
||||
假如`input_x`有维度`[D_1,..., D_k, D_1,..., D_k]`,那么输出是一个秩为k的Tensor,维度为`[D_1,..., D_k]`,其中:
|
||||
假如 `input_x` 有维度 :math:`[D_1,..., D_k, D_1,..., D_k]`,那么输出是一个秩为k的Tensor,维度为 :math:`[D_1,..., D_k]`,其中:
|
||||
|
||||
`output[i_1,..., i_k] = input_x[i_1,..., i_k, i_1,..., i_k]`。
|
||||
:math:`output[i_1,..., i_k] = input_x[i_1,..., i_k, i_1,..., i_k]`。
|
||||
|
||||
输入:
|
||||
- **input_x** (Tensor) - 输入Tensor。它的秩为`2k(k > 0)`。
|
||||
- **input_x** (Tensor) - 输入Tensor。它的秩为2k(k > 0)。
|
||||
|
||||
输出:
|
||||
Tensor,与 `input` 有相同的数据类型。
|
||||
|
|
|
@ -612,7 +612,7 @@ Operator Information Registration
|
|||
Customizing Operator
|
||||
--------------------
|
||||
|
||||
.. autosummary::
|
||||
.. msplatformautosummary::
|
||||
:toctree: ops
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
.. py:method:: log_prob(value, mean, sd)
|
||||
.. py:method:: log_prob(value, mean=None, sd=None)
|
||||
|
||||
the log value of the probability.
|
||||
|
||||
**Parameters**
|
||||
|
||||
- **value** (Tensor) - the value to compute.
|
||||
- **mean** (Tensor) - the mean of the distribution. Default value: None.
|
||||
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
|
||||
- **mean** (Tensor) - the mean of the distribution. Default: None.
|
||||
- **sd** (Tensor) - the standard deviation of the distribution. Default: None.
|
||||
|
||||
**Returns**
|
||||
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
.. py:method:: log_prob(value, mean, sd)
|
||||
.. py:method:: log_prob(value, mean=None, sd=None)
|
||||
|
||||
the log value of the probability.
|
||||
|
||||
**Parameters**
|
||||
|
||||
- **value** (Tensor) - the value to compute.
|
||||
- **mean** (Tensor) - the mean of the distribution. Default value: None.
|
||||
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
|
||||
- **mean** (Tensor) - the mean of the distribution. Default: None.
|
||||
- **sd** (Tensor) - the standard deviation of the distribution. Default: None.
|
||||
|
||||
**Returns**
|
||||
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
.. py:method:: log_prob(value, mean, sd)
|
||||
.. py:method:: log_prob(value, df=None, mean=None, sd=None)
|
||||
|
||||
the log value of the probability.
|
||||
|
||||
**Parameters**
|
||||
|
||||
- **value** (Tensor) - the value to compute.
|
||||
- **df** (Tensor) - the degrees of freedom of the distribution. Default value: None.
|
||||
- **mean** (Tensor) - the mean of the distribution. Default value: None.
|
||||
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
|
||||
- **df** (Tensor) - the degrees of freedom of the distribution. Default: None.
|
||||
- **mean** (Tensor) - the mean of the distribution. Default: None.
|
||||
- **sd** (Tensor) - the standard deviation of the distribution. Default: None.
|
||||
|
||||
**Returns**
|
||||
|
||||
|
|
|
@ -919,31 +919,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def addcdiv(self, x1, x2, value):
|
||||
r"""
|
||||
Performs the element-wise division of tensor x1 by tensor x2,
|
||||
multiply the result by the scalar value and add it to input_data.
|
||||
|
||||
.. math::
|
||||
y[i] = input\_data[i] + value[i] * (x1[i] / x2[i])
|
||||
|
||||
Args:
|
||||
x1 (Tensor): The numerator tensor.
|
||||
x2 (Tensor): The denominator tensor.
|
||||
value (Tensor): The multiplier for tensor x1/x2.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same shape and dtype as x1/x2.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, 1, 1, 1]), mindspore.float32)
|
||||
>>> x1 = Tensor(np.array([1, 2, 3, 4]), mindspore.float32)
|
||||
>>> x2 = Tensor(np.array([4, 3, 2, 1]), mindspore.float32)
|
||||
>>> value = Tensor([1], mindspore.float32)
|
||||
>>> y = x.addcdiv(x1, x2, value)
|
||||
>>> print(y)
|
||||
[1.25 1.6666667 2.5 5. ]
|
||||
For details, please refer to :func:`mindspore.ops.addcdiv`.
|
||||
"""
|
||||
|
||||
self._init_check()
|
||||
|
@ -951,33 +927,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def addcmul(self, x1, x2, value):
|
||||
r"""
|
||||
Performs the element-wise product of tensor x1 and tensor x2,
|
||||
multiply the result by the scalar value and add it to input_data.
|
||||
|
||||
.. math::
|
||||
y[i] = input\_data[i] + value[i] * (x1[i] * x2[i])
|
||||
|
||||
Args:
|
||||
x1 (Tensor): The tensor to be multiplied.
|
||||
x2 (Tensor): The tensor to be multiplied.
|
||||
value (Tensor): The multiplier for tensor x1*x2.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same shape and dtype as x1*x2.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, 1, 1]), mindspore.float32)
|
||||
>>> x1 = Tensor(np.array([[1], [2], [3]]), mindspore.float32)
|
||||
>>> x2 = Tensor(np.array([[1, 2, 3]]), mindspore.float32)
|
||||
>>> value = Tensor([1], mindspore.float32)
|
||||
>>> y = x.addcmul(x1, x2, value)
|
||||
>>> print(y)
|
||||
[[ 2. 3. 4.]
|
||||
[ 3. 5. 7.]
|
||||
[ 4. 7. 10.]]
|
||||
For details, please refer to :func:`mindspore.ops.addcmul`.
|
||||
"""
|
||||
|
||||
self._init_check()
|
||||
|
@ -1454,19 +1404,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def negative(self):
|
||||
r"""
|
||||
Return a new tensor with the negative of the elements of input.
|
||||
|
||||
Returns:
|
||||
Tensor, with the negative of the elements of the self Tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, 2, -1, 2, 0, -3.5]), mindspore.float32)
|
||||
>>> output = x.negative()
|
||||
>>> print(output)
|
||||
[-1. -2. 1. -2. 0. 3.5]
|
||||
For details, please refer to :func:`mindspore.ops.negative`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get("negative")(self)
|
||||
|
@ -3524,31 +3462,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def unbind(self, dim=0):
|
||||
r"""
|
||||
Removes a tensor dimension in specified axis.
|
||||
|
||||
Unstack a tensor of rank `R` along axis dimension, and output tensors will have rank `(R-1)`.
|
||||
|
||||
Given a tensor of shape :math:`(x_1, x_2, ..., x_R)`. If :math:`0 \le axis`,
|
||||
the shape of tensor in output is :math:`(x_1, x_2, ..., x_{axis}, x_{axis+2}, ..., x_R)`.
|
||||
|
||||
Args:
|
||||
dim (int): Dimension along which to unpack. Negative values wrap around. The range is [-R, R). Default: 0.
|
||||
|
||||
Returns:
|
||||
A tuple of tensors, the shape of each objects is the same.
|
||||
|
||||
Raises:
|
||||
ValueError: If `dim` is out of the range [-R, R).
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||
>>> output = x.unbind()
|
||||
>>> print(output)
|
||||
(Tensor(shape=[3], dtype=Int64, value=[1, 2, 3]), Tensor(shape=[3], dtype=Int64, value=[4, 5, 6]),
|
||||
Tensor(shape=[3], dtype=Int64, value=[7, 8, 9]))
|
||||
For details, please refer to :func:`mindspore.ops.unbind`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('unbind')(dim)(self)
|
||||
|
@ -3947,26 +3861,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def erfinv(self):
|
||||
r"""
|
||||
Computes the inverse error function of input. The inverse error function is defined in the range `(-1, 1)` as:
|
||||
|
||||
.. math::
|
||||
|
||||
erfinv(erf(x)) = x
|
||||
|
||||
Returns:
|
||||
Tensor, has the same shape and dtype as input tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: If dtype of input tensor is not float16, float32 or float64.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([0, 0.5, -0.9]), mindspore.float32)
|
||||
>>> output = x.erfinv()
|
||||
>>> print(output)
|
||||
[ 0. 0.47695306 -1.1630805 ]
|
||||
For details, please refer to :func:`mindspore.ops.erfinv`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('erfinv')(self)
|
||||
|
|
|
@ -3822,8 +3822,8 @@ def addbmm(x, batch1, batch2, *, beta=1, alpha=1):
|
|||
batch2 (Tensor): The second batch of tensor to be multiplied.
|
||||
|
||||
Keyword Args:
|
||||
beta (scalar[int, float], optional): Multiplier for `x`. Default: 1.
|
||||
alpha (scalar[int, float], optional): Multiplier for `batch1` @ `batch2`. Default: 1.
|
||||
beta (Union[int, float], optional): Multiplier for `x`. Default: 1.
|
||||
alpha (Union[int, float], optional): Multiplier for `batch1` @ `batch2`. Default: 1.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dtype as `x`.
|
||||
|
@ -3849,8 +3849,8 @@ def addmm(x, mat1, mat2, *, beta=1, alpha=1):
|
|||
mat2 (Tensor): The second tensor to be multiplied.
|
||||
|
||||
Keyword Args:
|
||||
beta (scalar[int, float], optional): Multiplier for `x`. Default: 1.
|
||||
alpha (scalar[int, float], optional): Multiplier for `mat1` @ `mat2`. Default: 1.
|
||||
beta (Union[int, float], optional): Multiplier for `x`. Default: 1.
|
||||
alpha (Union[int, float], optional): Multiplier for `mat1` @ `mat2`. Default: 1.
|
||||
|
||||
.. math::
|
||||
output = \beta x + \alpha (mat1 @ mat2)
|
||||
|
|
|
@ -3279,12 +3279,13 @@ def gaussian_nll_loss(x, target, var, full=False, eps=1e-6, reduction='mean'):
|
|||
target (Tensor): Tensor of shape :math:`(N, *)` or :math:`(*)`, same shape as the x, or same shape
|
||||
as the x but with one dimension equal to 1 (to allow broadcasting).
|
||||
var (Tensor): Tensor of shape :math:`(N, *)` or :math:`(*)`, same shape as x, or same shape as the x
|
||||
but with one dimension equal to 1, or same shape as the x but with one fewer dimension
|
||||
(to allow for broadcasting).
|
||||
full (bool): Include the constant term in the loss calculation. When :math:`full=True`, the constant term
|
||||
`const.` will be :math:`0.5 * log(2\pi)`. Default: False.
|
||||
eps (float): Used to improve the stability of log function must be greater than 0. Default: 1e-6.
|
||||
reduction (str): Apply specific reduction method to the output: 'none', 'mean', or 'sum'. Default: 'mean'.
|
||||
but with one dimension equal to 1, or same shape as the x but with one fewer dimension
|
||||
(to allow for broadcasting).
|
||||
full (bool, optional): Include the constant term in the loss calculation. When :math:`full=True`,
|
||||
the constant term `const.` will be :math:`0.5 * log(2\pi)`. Default: False.
|
||||
eps (float, optional): Used to improve the stability of log function must be greater than 0. Default: 1e-6.
|
||||
reduction (str, optional): Apply specific reduction method to the output: 'none', 'mean', or 'sum'.
|
||||
Default: 'mean'.
|
||||
|
||||
Returns:
|
||||
Tensor or Tensor scalar, the computed loss depending on `reduction`.
|
||||
|
|
Loading…
Reference in New Issue