add api triplet_margin_loss
This commit is contained in:
parent
aa4e287af7
commit
382492499f
|
@ -256,6 +256,7 @@ Dropout层
|
|||
mindspore.nn.SmoothL1Loss
|
||||
mindspore.nn.SoftMarginLoss
|
||||
mindspore.nn.SoftmaxCrossEntropyWithLogits
|
||||
mindspore.nn.TripletMarginLoss
|
||||
|
||||
优化器
|
||||
-------
|
||||
|
|
|
@ -74,6 +74,7 @@ mindspore.ops
|
|||
mindspore.ops.mse_loss
|
||||
mindspore.ops.nll_loss
|
||||
mindspore.ops.smooth_l1_loss
|
||||
mindspore.ops.triplet_margin_loss
|
||||
|
||||
激活函数
|
||||
^^^^^^^^^^
|
||||
|
|
|
@ -0,0 +1,49 @@
|
|||
mindspore.nn.TripletMarginLoss
|
||||
===============================
|
||||
|
||||
.. py:class:: class TripletMarginLoss(p=2, swap=False, eps=1e-06, reduction='mean')
|
||||
|
||||
执行三元组损失函数的操作。
|
||||
|
||||
创建一个标准,用于计算输入Tensor :math:`x` 、 :math:`positive` 和 :math:`negative` 与大于 :math:`0` 的 `margin` 之间的三元组损失值。
|
||||
可以用来测量样本之间的相似度。一个三元组包含 `a` 、 `p` 和 `n` (即分别代表 `x` 、 `positive` 和 `negative` )。
|
||||
所有输入Tensor的shape都应该为 :math:`(N, D)` 。
|
||||
距离交换在V. Balntas、E. Riba等人在论文 `Learning local feature descriptors with triplets and shallow convolutional neural networks <http://158.109.8.37/files/BRP2016.pdf>`_ 中有详细的阐述。
|
||||
|
||||
对于每个小批量样本,损失值为:
|
||||
|
||||
.. math::
|
||||
L(a, p, n) = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
|
||||
|
||||
其中
|
||||
|
||||
.. math::
|
||||
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p
|
||||
|
||||
参数:
|
||||
- **p** (int,可选) - 成对距离的范数。默认值:2。
|
||||
- **swap** (bool,可选) - 距离交换。默认值:False。
|
||||
- **eps** (float,可选) - 防止除数为 0。默认值:1e-06。
|
||||
- **reduction** (str,可选) - 指定要应用于输出的缩减方式,取值为"mean"、"sum"或"none"。默认值:"mean"。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - 从训练集随机选取的样本。数据类型为BasicType。
|
||||
- **positive** (Tensor) - 与 `x` 为同一类的样本,数据类型与shape与 `x` 一致。
|
||||
- **negative** (Tensor) - 与 `x` 为异类的样本,数据类型与shape与 `x` 一致。
|
||||
- **margin** (Tensor) - 用于拉进 `x` 和 `positive` 之间的距离,拉远 `x` 和 `negative` 之间的距离。
|
||||
|
||||
输出:
|
||||
Tensor。如果 `reduction` 为"none",其shape为 :math:`(N)`。否则,将返回Scalar。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 、 `positive` 、 `negative` 或者 `margin` 不是Tensor。
|
||||
- **TypeError** - `x` 、 `positive` 或者 `negative` 的数据类型不一致。
|
||||
- **TypeError** - `margin` 的数据类型不是float32。
|
||||
- **TypeError** - `p` 的数据类型不是int。
|
||||
- **TypeError** - `eps` 的数据类型不是float。
|
||||
- **TypeError** - `swap` 的数据类型不是bool。
|
||||
- **ValueError** - `x` 、 `positive` 和 `negative` 的维度同时小于等于1。
|
||||
- **ValueError** - `x` 、 `positive` 或 `negative` 的维度大于等于8。
|
||||
- **ValueError** - `margin` 的shape长度不为0。
|
||||
- **ValueError** - `x` 、 `positive` 和 `negative` 三者之间的shape无法广播。
|
||||
- **ValueError** - `reduction` 不为"mean"、"sum"或"none"。
|
|
@ -0,0 +1,32 @@
|
|||
mindspore.ops.triplet_margin_loss
|
||||
==================================
|
||||
|
||||
.. py:function:: mindspore.ops.triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False, reduction='mean')
|
||||
|
||||
三元组损失函数。
|
||||
详情请查看 :class:`mindspore.nn.TripletMarginLoss` 。
|
||||
|
||||
参数:
|
||||
- **anchor** (Tensor) - 从训练集随机选取的样本。数据类型为BasicType。
|
||||
- **positive** (Tensor) - 与 `anchor` 为同一类的样本,数据类型与shape与 `anchor` 一致。
|
||||
- **negative** (Tensor) - 与 `anchor` 为异类的样本,数据类型与shape与 `anchor` 一致。
|
||||
- **margin** (float,可选) - 用于拉进 `anchor` 和 `positive` 之间的距离,拉远 `anchor` 和 `negative` 之间的距离。默认值:1.0。
|
||||
- **p** (int,可选) - 成对距离的范数。默认值:2。
|
||||
- **eps** (float,可选) - 防止除数为 0。默认值:1e-06。
|
||||
- **swap** (bool,可选) - 距离交换。默认值:False。
|
||||
- **reduction** (str,可选) - 指定要应用于输出的缩减方式,取值为"mean"、"sum"或"none"。默认值:"mean"。
|
||||
|
||||
返回:
|
||||
Tensor。如果 `reduction` 为"none",其shape为 :math:`(N)`。否则,将返回Scalar。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `anchor` 、 `positive` 或者 `negative` 不是Tensor。
|
||||
- **TypeError** - `anchor` 、 `positive` 或者 `negative` 的数据类型不一致。
|
||||
- **TypeError** - `margin` 的数据类型不是float。
|
||||
- **TypeError** - `p` 的数据类型不是int。
|
||||
- **TypeError** - `eps` 的数据类型不是float。
|
||||
- **TypeError** - `swap` 的数据类型不是bool。
|
||||
- **ValueError** - `anchor` 、 `positive` 和 `negative` 的维度同时小于等于1。
|
||||
- **ValueError** - `anchor` 、 `positive` 或 `negative` 的维度大于等于8。
|
||||
- **ValueError** - `anchor` 、 `positive` 和 `negative` 三者之间的shape无法广播。
|
||||
- **ValueError** - `reduction` 不为"mean"、"sum"或"none"。
|
|
@ -256,6 +256,7 @@ Loss Function
|
|||
mindspore.nn.SmoothL1Loss
|
||||
mindspore.nn.SoftMarginLoss
|
||||
mindspore.nn.SoftmaxCrossEntropyWithLogits
|
||||
mindspore.nn.TripletMarginLoss
|
||||
|
||||
Optimizer
|
||||
---------
|
||||
|
|
|
@ -75,6 +75,7 @@ Loss Functions
|
|||
mindspore.ops.mse_loss
|
||||
mindspore.ops.nll_loss
|
||||
mindspore.ops.smooth_l1_loss
|
||||
mindspore.ops.triplet_margin_loss
|
||||
|
||||
Activation Functions
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
|
|
@ -24,7 +24,7 @@ from mindspore.nn.loss.loss import LossBase, L1Loss, CTCLoss, MSELoss, SmoothL1L
|
|||
SoftmaxCrossEntropyWithLogits, BCELoss, MultiMarginLoss, CosineEmbeddingLoss, \
|
||||
SampledSoftmaxLoss, PoissonNLLLoss, MultiLabelSoftMarginLoss, DiceLoss, BCEWithLogitsLoss, MultiClassDiceLoss, \
|
||||
RMSELoss, MAELoss, HuberLoss, CrossEntropyLoss, NLLLoss, KLDivLoss, MarginRankingLoss, GaussianNLLLoss, \
|
||||
HingeEmbeddingLoss, MultilabelMarginLoss
|
||||
HingeEmbeddingLoss, MultilabelMarginLoss, TripletMarginLoss
|
||||
|
||||
|
||||
__all__ = ['LossBase', 'L1Loss', 'CTCLoss', 'MSELoss', 'SmoothL1Loss', 'SoftMarginLoss', 'FocalLoss',
|
||||
|
@ -32,4 +32,4 @@ __all__ = ['LossBase', 'L1Loss', 'CTCLoss', 'MSELoss', 'SmoothL1Loss', 'SoftMarg
|
|||
'CosineEmbeddingLoss', 'SampledSoftmaxLoss', 'PoissonNLLLoss',
|
||||
'MultiLabelSoftMarginLoss', 'DiceLoss', 'MultiClassDiceLoss', 'MultilabelMarginLoss',
|
||||
'RMSELoss', 'MAELoss', 'HuberLoss', 'CrossEntropyLoss', 'NLLLoss', 'KLDivLoss', 'MarginRankingLoss',
|
||||
'GaussianNLLLoss', 'HingeEmbeddingLoss']
|
||||
'GaussianNLLLoss', 'HingeEmbeddingLoss', 'TripletMarginLoss']
|
||||
|
|
|
@ -26,7 +26,6 @@ from mindspore.ops import operations as P
|
|||
from mindspore.ops.operations import _inner_ops as inner
|
||||
from mindspore.ops.operations.nn_ops import MultiMarginLoss as MultiMarginLossOp
|
||||
from mindspore.ops.operations.nn_ops import MultilabelMarginLoss as MultilabelMarginLossOp
|
||||
from mindspore.ops.operations.nn_ops import TripletMarginLoss as TripletMarginLossOp
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import nn
|
||||
from mindspore.ops.primitive import constexpr
|
||||
|
@ -1942,15 +1941,16 @@ class TripletMarginLoss(LossBase):
|
|||
TripletMarginLoss operation.
|
||||
|
||||
Creates a criterion that measures the triplet loss given an input
|
||||
tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
|
||||
This is used for measuring a relative similarity between samples. A triplet
|
||||
is composed by `a`, `p` and `n` (i.e., `anchor`, `positive examples` and `negative
|
||||
examples` respectively). The shapes of all input tensors should be
|
||||
tensors :math:`x`, :math:`positive`, :math:`negative` and a :math:`margin` with a value greater than :math:`0`.
|
||||
This is used for measuring a relative similarity between samples.
|
||||
A triplet is composed by `a`, `p` and `n` (i.e., `x`, `positive` and `negative` respectively).
|
||||
The shapes of all input tensors should be
|
||||
:math:`(N, D)`.
|
||||
|
||||
The distance swap is described in detail in the paper `Learning shallow
|
||||
convolutional feature descriptors with triplet losses` by
|
||||
V. Balntas, E. Riba et al.
|
||||
The distance swap is described in detail in the paper
|
||||
`Learning local feature descriptors with triplets and shallow convolutional neural
|
||||
networks <http://158.109.8.37/files/BRP2016.pdf>`_
|
||||
by V. Balntas, E. Riba et al.
|
||||
|
||||
The loss function for each sample in the mini-batch is:
|
||||
|
||||
|
@ -1963,26 +1963,25 @@ class TripletMarginLoss(LossBase):
|
|||
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p
|
||||
|
||||
Args:
|
||||
p (int): The norm degree for pairwise distance. Default: 2.
|
||||
eps (float): Default: 1e-06.
|
||||
swap (bool): The distance swap is described in detail in the paper
|
||||
`Learning shallow convolutional feature descriptors with triplet losses` by
|
||||
V. Balntas, E. Riba et al. Default: "False".
|
||||
reduction (str): Apply specific reduction method to the output: 'none', 'mean', 'sum'. Default: "mean".
|
||||
p (int, optional): The norm degree for pairwise distance. Default: 2.
|
||||
eps (float, optional): Add small value to avoid division by zero. Default: 1e-06.
|
||||
swap (bool, optional): The distance swap change the negative distance to the distance between positive
|
||||
sample and negative sample. Default: "False".
|
||||
reduction (str, optional): Apply specific reduction method to the output: 'none', 'mean', 'sum'.
|
||||
Default: "mean".
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - A sample randomly selected from the training set. Data type must be BasicType.
|
||||
- **positive** (Tensor) - A sample belonging to the same category as x, with the same type and shape as `x`.
|
||||
- **negative** (Tensor) - A sample belonging to the different class from x, with the same type and shape as `x`.
|
||||
- **positive** (Tensor) - A sample belonging to the same category as `x`, with the same type and shape as `x`.
|
||||
- **negative** (Tensor) - A sample belonging to the different class from `x`, with the same type and shape
|
||||
as `x`.
|
||||
- **margin** (Tensor) - Make a margin between the positive pair and the negative pair.
|
||||
|
||||
Outputs:
|
||||
Union[Tensor, Scalar], if `reduction` is "none", its shape is :math:`(N)`.
|
||||
Otherwise, a scalar value will be returned.
|
||||
Tensor. If `reduction` is "none", its shape is :math:`(N)`. Otherwise, a scalar value will be returned.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x` or `positive` or 'negative' or 'margin' is not a Tensor.
|
||||
TypeError: If dtype of `x` or `positive` or `negative` is not BasicType.
|
||||
TypeError: If dtype of `x`, `positive` and `negative` is not the same.
|
||||
TypeError: If `margin` is not float32.
|
||||
TypeError: If `p` is not an int.
|
||||
|
@ -1995,7 +1994,7 @@ class TripletMarginLoss(LossBase):
|
|||
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU`
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> loss = nn.TripletMarginLoss()
|
||||
|
@ -2008,12 +2007,16 @@ class TripletMarginLoss(LossBase):
|
|||
0.8881968
|
||||
"""
|
||||
|
||||
def __init__(self, p=2, swap=False, eps=1e-6, reduction='mean'):
|
||||
def __init__(self, p=2, swap=False, eps=1e-06, reduction='mean'):
|
||||
super(TripletMarginLoss, self).__init__()
|
||||
self.triplet_margin_loss = TripletMarginLossOp(p=p, swap=swap, eps=eps, reduction=reduction)
|
||||
self.p = p
|
||||
self.swap = swap
|
||||
self.eps = eps
|
||||
self.reduction = reduction
|
||||
|
||||
def construct(self, x, positive, negative, margin):
|
||||
return self.triplet_margin_loss(x, positive, negative, margin)
|
||||
return F.triplet_margin_loss(x, positive, negative, margin=margin, p=self.p,
|
||||
eps=self.eps, swap=self.swap, reduction=self.reduction)
|
||||
|
||||
|
||||
@constexpr
|
||||
|
|
|
@ -454,6 +454,7 @@ from .nn_func import (
|
|||
lp_pool1d,
|
||||
lp_pool2d,
|
||||
mse_loss,
|
||||
triplet_margin_loss,
|
||||
msort
|
||||
)
|
||||
from .linalg_func import (
|
||||
|
|
|
@ -36,6 +36,7 @@ from mindspore.ops.operations.nn_ops import MaxUnpool2D, MaxUnpool3D
|
|||
from mindspore.ops.operations.nn_ops import FractionalMaxPoolWithFixedKsize, FractionalMaxPool3DWithFixedKsize
|
||||
from mindspore.ops.operations.nn_ops import PadV3
|
||||
from mindspore.ops.operations.nn_ops import ChannelShuffle
|
||||
from mindspore.ops.operations.nn_ops import TripletMarginLoss
|
||||
|
||||
slice_ = P.Slice()
|
||||
fast_gelu_ = P.FastGeLU()
|
||||
|
@ -5501,6 +5502,58 @@ def msort(x):
|
|||
return ops.Sort(axis=0)(x)[0]
|
||||
|
||||
|
||||
def triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False, reduction='mean'):
|
||||
"""
|
||||
TripletMarginLoss operation.
|
||||
See :class:`mindspore.nn.TripletMarginLoss` for details.
|
||||
|
||||
Args:
|
||||
anchor (Tensor): A sample randomly selected from the training set. Data type must be BasicType.
|
||||
positive (Tensor): A sample belonging to the same category as `anchor`, with the same type and shape
|
||||
as `anchor`.
|
||||
negative (Tensor): A sample belonging to the different class from `anchor`, with the same type and shape
|
||||
as `anchor`.
|
||||
margin (float, optional): Make a margin between the positive pair and the negative pair. Default: 1.0.
|
||||
p (int, optional): The norm degree for pairwise distance. Default: 2.
|
||||
eps (float, optional): Add small value to avoid division by zero. Default: 1e-06.
|
||||
swap (bool, optional): The distance swap change the negative distance to the distance between positive
|
||||
sample and negative sample. Default: "False".
|
||||
reduction (str, optional): Apply specific reduction method to the output: 'none', 'mean', 'sum'.
|
||||
Default: "mean".
|
||||
|
||||
Returns:
|
||||
Tensor. If `reduction` is "none", its shape is :math:`(N)`. Otherwise, a scalar value will be returned.
|
||||
|
||||
Raises:
|
||||
TypeError: If `anchor` or `positive` or 'negative' is not a Tensor.
|
||||
TypeError: If dtype of `anchor`, `positive` and `negative` is not the same.
|
||||
TypeError: If `margin` is not a float.
|
||||
TypeError: If `p` is not an int.
|
||||
TypeError: If `eps` is not a float.
|
||||
TypeError: If `swap` is not a bool.
|
||||
ValueError: If dimensions of input `anchor`, `positive` and `negative` are less than or equal to 1 at the
|
||||
same time.
|
||||
ValueError: If the dimension of input `anchor` or `positive` or `negative` is bigger than or equal to 8.
|
||||
ValueError: If shape of `anchor`, `positive` and `negative` cannot broadcast.
|
||||
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> anchor = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32)
|
||||
>>> positive = Tensor(np.array([[0.4, 0.6], [0.4, 0.6]]), mindspore.float32)
|
||||
>>> negative = Tensor(np.array([[0.2, 0.9], [0.3, 0.7]]), mindspore.float32)
|
||||
>>> output = ops.triplet_margin_loss(anchor, positive, negative)
|
||||
>>> print(output)
|
||||
0.8881968
|
||||
"""
|
||||
if not isinstance(margin, Tensor):
|
||||
margin = Tensor(margin, mstype.float32)
|
||||
triplet_margin_loss_op = _get_cache_prim(TripletMarginLoss)(p=p, eps=eps, swap=swap, reduction=reduction)
|
||||
return triplet_margin_loss_op(anchor, positive, negative, margin)
|
||||
|
||||
|
||||
__all__ = [
|
||||
'adaptive_avg_pool1d',
|
||||
'adaptive_avg_pool2d',
|
||||
|
@ -5583,5 +5636,6 @@ __all__ = [
|
|||
'max_unpool3d',
|
||||
'mse_loss',
|
||||
'msort',
|
||||
'triplet_margin_loss',
|
||||
]
|
||||
__all__.sort()
|
||||
|
|
|
@ -0,0 +1,123 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import torch
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_triplet_margin_loss_float64(mode):
|
||||
"""
|
||||
Feature: Input type of float64
|
||||
Description: Input type of [float64, float64, float64].
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_context(mode=mode)
|
||||
data_type = np.float64
|
||||
anchor_array = np.array([[1.3, 20.5, 5.6],
|
||||
[3.5, 4.8, 7.2],
|
||||
[0.2, 0.01, 1],
|
||||
[4, 4.1, 20]]).astype(data_type)
|
||||
positive_array = np.array([[2., 10., 1.],
|
||||
[6., 7., 10.],
|
||||
[13., 4., 1.],
|
||||
[0.33, -4, -1.5]]).astype(data_type)
|
||||
negative_array = np.array([[2., 21., 6.],
|
||||
[68., 9., 10.],
|
||||
[131., 25., 16.],
|
||||
[0.31, -0.14, -16.]]).astype(data_type)
|
||||
margin = np.float32(2.0)
|
||||
p = 0
|
||||
swap = True
|
||||
reduction = "none"
|
||||
eps = 1e-5
|
||||
|
||||
anchor = Tensor(anchor_array)
|
||||
positive = Tensor(positive_array)
|
||||
negative = Tensor(negative_array)
|
||||
ms_margin = Tensor(margin)
|
||||
triplet_margin_loss = nn.TripletMarginLoss(p=p, eps=eps, swap=swap, reduction=reduction)
|
||||
output_ms = triplet_margin_loss(anchor, positive, negative, ms_margin)
|
||||
|
||||
torch_anchor = torch.tensor(anchor_array)
|
||||
torch_positive = torch.tensor(positive_array)
|
||||
torch_negative = torch.tensor(negative_array)
|
||||
expect = torch.nn.functional.triplet_margin_loss(torch_anchor, torch_positive,
|
||||
torch_negative, margin=margin,
|
||||
p=p, eps=eps, swap=swap,
|
||||
reduction=reduction)
|
||||
assert np.allclose(output_ms.asnumpy(),
|
||||
expect.numpy(),
|
||||
rtol=1e-4,
|
||||
atol=1e-4,
|
||||
equal_nan=False)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_triplet_margin_loss_float32(mode):
|
||||
"""
|
||||
Feature: Input type of float32
|
||||
Description: Input type of [float32, float32, float32].
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_context(mode=mode)
|
||||
data_type = np.float32
|
||||
anchor_array = np.array([[1.3, 20.5, 5.6],
|
||||
[3.5, 4.8, 7.2],
|
||||
[0.2, 0.01, 1],
|
||||
[4, 4.1, 20]]).astype(data_type)
|
||||
positive_array = np.array([[2., 10., 1.],
|
||||
[6., 7., 10.],
|
||||
[13., 4., 1.],
|
||||
[0.33, -4, -1.5]]).astype(data_type)
|
||||
negative_array = np.array([[2., 21., 6.],
|
||||
[68., 9., 10.],
|
||||
[131., 25., 16.],
|
||||
[0.31, -0.14, -16.]]).astype(data_type)
|
||||
margin = np.float32(2.0)
|
||||
p = 1
|
||||
swap = False
|
||||
reduction = "none"
|
||||
eps = 1e-6
|
||||
|
||||
anchor = Tensor(anchor_array)
|
||||
positive = Tensor(positive_array)
|
||||
negative = Tensor(negative_array)
|
||||
ms_margin = Tensor(margin)
|
||||
triplet_margin_loss = nn.TripletMarginLoss(p=p, eps=eps, swap=swap, reduction=reduction)
|
||||
output_ms = triplet_margin_loss(anchor, positive, negative, ms_margin)
|
||||
|
||||
torch_anchor = torch.tensor(anchor_array)
|
||||
torch_positive = torch.tensor(positive_array)
|
||||
torch_negative = torch.tensor(negative_array)
|
||||
expect = torch.nn.functional.triplet_margin_loss(torch_anchor, torch_positive,
|
||||
torch_negative, margin=margin,
|
||||
p=p, eps=eps, swap=swap,
|
||||
reduction=reduction)
|
||||
assert np.allclose(output_ms.asnumpy(),
|
||||
expect.numpy(),
|
||||
rtol=1e-4,
|
||||
atol=1e-4,
|
||||
equal_nan=False)
|
|
@ -0,0 +1,139 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import torch
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.ops as ops
|
||||
import mindspore.common.dtype as mstype
|
||||
|
||||
|
||||
class NetTripletMarginLoss(nn.Cell):
|
||||
def __init__(self, margin=Tensor(1.0, mstype.float32), p=2, swap=False, eps=1e-6, reduction="mean"):
|
||||
super(NetTripletMarginLoss, self).__init__()
|
||||
self.margin = margin
|
||||
self.p = p
|
||||
self.swap = swap
|
||||
self.eps = eps
|
||||
self.reduction = reduction
|
||||
|
||||
def construct(self, anchor, positive, negative):
|
||||
return ops.triplet_margin_loss(anchor, positive, negative, margin=self.margin, p=self.p,
|
||||
eps=self.eps, swap=self.swap, reduction=self.reduction)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_triplet_margin_loss_float64(mode):
|
||||
"""
|
||||
Feature: Input type of float64
|
||||
Description: Input type of [float64, float64, float64].
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_context(mode=mode)
|
||||
data_type = np.float64
|
||||
anchor_array = np.array([[1.3, 20.5, 5.6],
|
||||
[3.5, 4.8, 7.2],
|
||||
[0.2, 0.01, 1],
|
||||
[4, 4.1, 20]]).astype(data_type)
|
||||
positive_array = np.array([[2., 10., 1.],
|
||||
[6., 7., 10.],
|
||||
[13., 4., 1.],
|
||||
[0.33, -4, -1.5]]).astype(data_type)
|
||||
negative_array = np.array([[2., 21., 6.],
|
||||
[68., 9., 10.],
|
||||
[131., 25., 16.],
|
||||
[0.31, -0.14, -16.]]).astype(data_type)
|
||||
margin = np.float32(2.0)
|
||||
p = 0
|
||||
swap = True
|
||||
reduction = "none"
|
||||
eps = 1e-5
|
||||
|
||||
anchor = Tensor(anchor_array)
|
||||
positive = Tensor(positive_array)
|
||||
negative = Tensor(negative_array)
|
||||
triplet_margin_loss = NetTripletMarginLoss(margin=margin, p=p, eps=eps,
|
||||
swap=swap, reduction=reduction)
|
||||
output_ms = triplet_margin_loss(anchor, positive, negative)
|
||||
|
||||
torch_anchor = torch.tensor(anchor_array)
|
||||
torch_positive = torch.tensor(positive_array)
|
||||
torch_negative = torch.tensor(negative_array)
|
||||
expect = torch.nn.functional.triplet_margin_loss(torch_anchor, torch_positive,
|
||||
torch_negative, margin=margin,
|
||||
p=p, eps=eps, swap=swap,
|
||||
reduction=reduction)
|
||||
assert np.allclose(output_ms.asnumpy(),
|
||||
expect.numpy(),
|
||||
rtol=1e-4,
|
||||
atol=1e-4,
|
||||
equal_nan=False)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_triplet_margin_loss_float32(mode):
|
||||
"""
|
||||
Feature: Input type of float32
|
||||
Description: Input type of [float32, float32, float32].
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_context(mode=mode)
|
||||
data_type = np.float32
|
||||
anchor_array = np.array([[1.3, 20.5, 5.6],
|
||||
[3.5, 4.8, 7.2],
|
||||
[0.2, 0.01, 1],
|
||||
[4, 4.1, 20]]).astype(data_type)
|
||||
positive_array = np.array([[2., 10., 1.],
|
||||
[6., 7., 10.],
|
||||
[13., 4., 1.],
|
||||
[0.33, -4, -1.5]]).astype(data_type)
|
||||
negative_array = np.array([[2., 21., 6.],
|
||||
[68., 9., 10.],
|
||||
[131., 25., 16.],
|
||||
[0.31, -0.14, -16.]]).astype(data_type)
|
||||
margin = np.float32(2.0)
|
||||
p = 1
|
||||
swap = False
|
||||
reduction = "none"
|
||||
eps = 1e-6
|
||||
|
||||
anchor = Tensor(anchor_array)
|
||||
positive = Tensor(positive_array)
|
||||
negative = Tensor(negative_array)
|
||||
triplet_margin_loss = NetTripletMarginLoss(margin=margin, p=p, eps=eps,
|
||||
swap=swap, reduction=reduction)
|
||||
output_ms = triplet_margin_loss(anchor, positive, negative)
|
||||
|
||||
torch_anchor = torch.tensor(anchor_array)
|
||||
torch_positive = torch.tensor(positive_array)
|
||||
torch_negative = torch.tensor(negative_array)
|
||||
expect = torch.nn.functional.triplet_margin_loss(torch_anchor, torch_positive,
|
||||
torch_negative, margin=margin,
|
||||
p=p, eps=eps, swap=swap,
|
||||
reduction=reduction)
|
||||
assert np.allclose(output_ms.asnumpy(),
|
||||
expect.numpy(),
|
||||
rtol=1e-4,
|
||||
atol=1e-4,
|
||||
equal_nan=False)
|
Loading…
Reference in New Issue