diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/bincount_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/bincount_cpu_kernel.cc index 22162e861ba..2fda3afcaa5 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/bincount_cpu_kernel.cc +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/bincount_cpu_kernel.cc @@ -36,9 +36,9 @@ void BincountCpuKernelMod::InitKernel(const CNodePtr &kernel_node) { } template -void BincountTask(const std::vector &inputs, const std::vector &workspaces, +void BincountTask(const std::vector &inputs, const std::vector &, const std::vector &outputs, const std::vector &input_arr_sizes, int32_t num_bins, - const std::vector &input_weights_sizes, const std::vector &output_sizes) { + const std::vector &input_weights_sizes, const std::vector &) { auto bin_array = static_cast(inputs[0]->addr); auto output_data = static_cast(outputs[0]->addr); const size_t data_num = SizeOf(input_arr_sizes); diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/combined_non_max_suppression_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/combined_non_max_suppression_cpu_kernel.cc index c76c659d4db..676d7529e56 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/combined_non_max_suppression_cpu_kernel.cc +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/combined_non_max_suppression_cpu_kernel.cc @@ -187,9 +187,9 @@ size_t CombinedNonMaxSuppressionCpuKernelMod::nms_perbath(float *boxes, float *s int *valid_detection) { int box_size = num_bath_ * num_detection_ * sizeof(float) * multiplier; int score_size = num_bath_ * num_detection_ * sizeof(float); - void(memset_s(nmsed_boxes, box_size, 0.0, box_size)); - void(memset_s(nmsed_scores, score_size, 0.0, score_size)); - void(memset_s(nmsed_class, score_size, 0.0, score_size)); + void(memset_s(nmsed_boxes, box_size, 0, box_size)); + void(memset_s(nmsed_scores, score_size, 0, score_size)); + void(memset_s(nmsed_class, score_size, 0, score_size)); void(memset_s(valid_detection, sizeof(int) * num_bath_, 0, sizeof(int) * num_bath_)); const float box_min = 0.0; const float box_max = 1.0; diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/eigen/eigen_common_utils.h b/mindspore/ccsrc/plugin/device/cpu/kernel/eigen/eigen_common_utils.h index c0a75265e69..598a4b43432 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/eigen/eigen_common_utils.h +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/eigen/eigen_common_utils.h @@ -86,7 +86,7 @@ struct TTypes { class EigenTensor { public: EigenTensor() = delete; - EigenTensor(ShapeVector &shape, void *data_ptr) : tensor_shape(shape), tensor_data_ptr(data_ptr) {} + EigenTensor(const ShapeVector &shape, void *data_ptr) : tensor_shape(shape), tensor_data_ptr(data_ptr) {} EigenTensor(std::vector &shape, void *data_ptr) : tensor_data_ptr(data_ptr) { for (size_t dim : shape) { (void)tensor_shape.emplace_back(static_cast(dim)); diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/geqrf_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/geqrf_cpu_kernel.cc index d33418669f7..1fa89ab8c1c 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/geqrf_cpu_kernel.cc +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/geqrf_cpu_kernel.cc @@ -100,19 +100,19 @@ std::unique_ptr GeqrfCpuKernelMod::Larf(size_t m, size_t n, T *x, T *tau, s } template -void GeqrfCpuKernelMod::Geqrf(size_t num_m, size_t num_n, T *x, T *tau) { - if (num_m < 0 || num_n < 0) { +void GeqrfCpuKernelMod::Geqrf(size_t num_m_, size_t num_n_, T *x, T *tau) { + if (num_m_ < 0 || num_n_ < 0) { return; } - size_t k = std::min(num_m, num_n); + size_t k = std::min(num_m_, num_n_); T one = static_cast(1); - std::unique_ptr workspace = std::make_unique(num_n); + std::unique_ptr workspace = std::make_unique(num_n_); for (size_t i = 0; i < k; i++) { - Larfg(num_m - i, i, i, x, tau + i); - T aii = *(x + i * num_n + i); - *(x + i * num_n + i) = one; - workspace = Larf(num_m - i, num_n - i - 1, x, tau + i, std::move(workspace), i, i + 1); - *(x + i * num_n + i) = aii; + Larfg(num_m_ - i, i, i, x, tau + i); + T aii = *(x + i * num_n_ + i); + *(x + i * num_n_ + i) = one; + workspace = Larf(num_m_ - i, num_n_ - i - 1, x, tau + i, std::move(workspace), i, i + 1); + *(x + i * num_n_ + i) = aii; } } diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.cc index 7eea0b2eb66..7491f440238 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.cc +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.cc @@ -215,7 +215,7 @@ bool MatrixExpCpuKernelMod::LaunchKernel(const std::vector & return true; } -void MatrixExpCpuKernelMod::TyepChangeForFp16(int64_t i, int64_t m, int64_t size_mm, mindspore::Float16 *input_x, +void MatrixExpCpuKernelMod::TyepChangeForFp16(int64_t i, int64_t m, int64_t size_mm, const mindspore::Float16 *input_x, mindspore::Float16 *output_y) const { typedef Eigen::Matrix MatrixXd; MatrixXd I(m, m); diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.h b/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.h index 895b7e5dd2b..6acdbafe6d5 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.h +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/matrix_exp_cpu_kernel.h @@ -66,7 +66,7 @@ class MatrixExpCpuKernelMod : public NativeCpuKernelMod, public MatchKernelHelpe bool LaunchKernel(const std::vector &inputs, const std::vector &workspace, const std::vector &outputs); - void TyepChangeForFp16(int64_t i, int64_t m, int64_t size_mm, mindspore::Float16 *input_x, + void TyepChangeForFp16(int64_t i, int64_t m, int64_t size_mm, const mindspore::Float16 *input_x, mindspore::Float16 *output_y) const; template diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/non_deterministic_ints_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/non_deterministic_ints_cpu_kernel.cc index 9056db9928c..d7ba6d24802 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/non_deterministic_ints_cpu_kernel.cc +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/non_deterministic_ints_cpu_kernel.cc @@ -59,7 +59,7 @@ bool NonDeterministicIntsCPUKernelMod::LaunchKernel(const std::vectorsize / sizeof(T1); auto task = [output](size_t start, size_t end) { auto max_data = std::numeric_limits::max(); - std::default_random_engine seed(time(0)); + std::default_random_engine seed(time(nullptr)); std::uniform_int_distribution u(-max_data, max_data); for (size_t i = start; i < end; ++i) { output[i] = u(seed); diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_cpu_kernel.cc index 1a3ebf63dbd..f90363df0a9 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_cpu_kernel.cc +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_cpu_kernel.cc @@ -122,10 +122,13 @@ class CachedInterpolationCalculator { switch (new_indices_hand) { case 0: indexes_[0] = x_0; + break; case 1: indexes_[1] = x_1; + break; case caseid2: indexes_[kIndex2] = x_2; + break; case caseid3: indexes_[kIndex3] = x_3; break; @@ -198,10 +201,10 @@ inline void GetWeightsAndIndices(const float scale, const int64_t out_loc, const } } -static void ComputeXWeightsAndIndices(const ResizerState &resizer_state, const bool half_pixel_centers, +static void ComputeXWeightsAndIndices(const ResizerState &resizer_state, const bool half_pixel_centers_, std::vector *x_wais) { CachedInterpolationCalculator calc; - if (half_pixel_centers) { + if (half_pixel_centers_) { for (int64_t x = 0; x < resizer_state.out_width; ++x) { GetWeightsAndIndices(resizer_state.width_scale, x, resizer_state.in_width, &(*x_wais)[static_cast(x)]); @@ -314,10 +317,10 @@ std::vector CalSwitch(const WeightsAndIndices &x_wai, std::vector } template -inline void interpolate_with_caching(const T1 *input_data, const ResizerState &RS, const bool half_pixel_centers, +inline void interpolate_with_caching(const T1 *input_data, const ResizerState &RS, const bool half_pixel_centers_, T2 output_data) { std::vector x_wais(RS.out_width); - ComputeXWeightsAndIndices(RS, half_pixel_centers, &x_wais); + ComputeXWeightsAndIndices(RS, half_pixel_centers_, &x_wais); const int64_t in_row_width = RS.in_width * RS.channels; const int64_t in_batch_width = RS.in_height * in_row_width; const T1 *input_b_ptr = input_data; @@ -327,7 +330,7 @@ inline void interpolate_with_caching(const T1 *input_data, const ResizerState &R for (int64_t b = 0; b < RS.batch_size; ++b, input_b_ptr += in_batch_width) { for (int64_t y = 0; y < RS.out_height; ++y, output_y_ptr += RS.out_width * RS.channels) { WeightsAndIndices y_wai; - if (half_pixel_centers) { + if (half_pixel_centers_) { GetWeightsAndIndices(RS.height_scale, y, RS.in_height, &y_wai); } else { GetWeightsAndIndices(RS.height_scale, y, RS.in_height, &y_wai); diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_grad_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_grad_cpu_kernel.cc index 0921670272e..a1ff7344389 100644 --- a/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_grad_cpu_kernel.cc +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/resize_bicubic_grad_cpu_kernel.cc @@ -109,10 +109,13 @@ class CachedInterpolationCalculator { switch (new_indices_hand) { case 0: indexes_[0] = x_0; + break; case 1: indexes_[1] = x_1; + break; case caseid2: indexes_[kIndex2] = x_2; + break; case caseid3: indexes_[kIndex3] = x_3; break; @@ -186,10 +189,10 @@ inline void GetWeightsAndIndicesGrad(const float scale, const int64_t out_loc, c } } -static void ComputeGradientXWeightsAndIndices(const ResizerGradState &RGS, const bool half_pixel_centers, +static void ComputeGradientXWeightsAndIndices(const ResizerGradState &RGS, const bool half_pixel_centers_, std::vector *x_wais) { CachedInterpolationCalculator calc; - if (half_pixel_centers) { + if (half_pixel_centers_) { for (int64_t x = 0; x < RGS.resized_width; ++x) { GetWeightsAndIndicesGrad(RGS.width_scale, x, RGS.original_width, &(*x_wais)[static_cast(x)]); @@ -284,10 +287,10 @@ void CalNonUtil(const ResizerGradState &RGS, const bool half_pixel_centers, } template -inline void ResizeBicubicGrad(const float *input_grad, const ResizerGradState &RGS, const bool half_pixel_centers, +inline void ResizeBicubicGrad(const float *input_grad, const ResizerGradState &RGS, const bool half_pixel_centers_, T *output_grad) { std::vector x_wais(RGS.resized_width); - ComputeGradientXWeightsAndIndices(RGS, half_pixel_centers, &x_wais); + ComputeGradientXWeightsAndIndices(RGS, half_pixel_centers_, &x_wais); const bool flag = true; bool utils_flag = false; if (RGS.original_width * RGS.original_height * RGS.channels * RGS.batch_size >= kParallelDataNum) { @@ -297,13 +300,13 @@ inline void ResizeBicubicGrad(const float *input_grad, const ResizerGradState &R for (int64_t b = 0; b < RGS.batch_size; ++b) { auto task = [&](int64_t start, int64_t end) { for (int64_t y = start; y < end; ++y) { - ResizeCommomCalc(RGS, half_pixel_centers, x_wais, flag, input_grad, output_grad, b, y); + ResizeCommomCalc(RGS, half_pixel_centers_, x_wais, flag, input_grad, output_grad, b, y); } }; CPUKernelUtils::ParallelFor(task, static_cast(RGS.resized_height)); } } else { - CalNonUtil(RGS, half_pixel_centers, x_wais, flag, input_grad, output_grad); + CalNonUtil(RGS, half_pixel_centers_, x_wais, flag, input_grad, output_grad); } }