[fix][assistant][I3PYD0] fix bug in the Ascend operator HSigmoid and HSigmoidGrad

This commit is contained in:
wanglixin 2021-07-23 16:33:16 +08:00
parent b6c575689d
commit 33e93e296c
10 changed files with 71 additions and 84 deletions

3
.gitignore vendored
View File

@ -104,9 +104,6 @@ mindspore/.commit_id
# lite test file
mindspore/lite/test/do_test/
HSigmoid_Test/
.vs
# lite opencl compile file
*.cl.inc

View File

@ -32,6 +32,10 @@ namespace ops {
namespace {
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
CheckAndConvertUtils::CheckInteger("input number", input_args.size(), kEqual, 2, primitive->name());
for (const auto &item : input_args) {
MS_EXCEPTION_IF_NULL(item);
}
auto prim_name = primitive->name();
auto grads_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
auto input_x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[1]->BuildShape())[kShape];
@ -45,7 +49,7 @@ TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &
for (const auto &item : input_args) {
MS_EXCEPTION_IF_NULL(item);
}
const std::set<TypePtr> valid_types = {kFloat16, kFloat32};
const std::set<TypePtr> valid_types = {kInt8, kInt16, kInt32, kInt64, kFloat16, kFloat32};
std::map<std::string, TypePtr> types;
types.emplace("grads", input_args[0]->BuildType());
types.emplace("input_x", input_args[1]->BuildType());
@ -58,6 +62,5 @@ AbstractBasePtr HSigmoidGradInfer(const abstract::AnalysisEnginePtr &, const Pri
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args),
InferShape(primitive, input_args)->shape());
}
REGISTER_PRIMITIVE_EVAL_IMPL(HSigmoidGrad, prim::kPrimHSigmoidGrad, HSigmoidGradInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -34,6 +34,7 @@ class HSigmoidGrad : public PrimitiveC {
~HSigmoidGrad() = default;
MS_DECLARE_PARENT(HSigmoidGrad, PrimitiveC);
};
AbstractBasePtr HSigmoidGradInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args);
using PrimHSigmoidGradPtr = std::shared_ptr<HSigmoidGrad>;

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -29,24 +29,21 @@ abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<A
auto in_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->GetShapeTrack())[kShape];
return std::make_shared<abstract::Shape>(in_shape);
}
TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
if (std::any_of(input_args.begin(), input_args.end(), [](const AbstractBasePtr &a) { return a == nullptr; })) {
MS_LOG(EXCEPTION) << "nullptr";
}
std::map<std::string, TypePtr> types;
const std::set<TypePtr> valid_types = {kFloat16, kFloat32};
const std::set<TypePtr> valid_types = {kInt8, kInt16, kInt32, kInt64, kFloat16, kFloat32};
types.emplace("input_x", input_args[0]->BuildType());
return CheckAndConvertUtils::CheckTensorTypeSame(types, valid_types, prim->name());
}
} // namespace
AbstractBasePtr HSigmoidInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args),
InferShape(primitive, input_args)->shape());
}
REGISTER_PRIMITIVE_EVAL_IMPL(HSigmoid, prim::kPrimHSigmoid, HSigmoidInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -13,6 +13,9 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_HSIGMOID_H_
#define MINDSPORE_CORE_OPS_HSIGMOID_H_
#include <vector>
#include <memory>
@ -36,3 +39,5 @@ AbstractBasePtr HSigmoidInfer(const abstract::AnalysisEnginePtr &, const Primiti
using PrimHSigmoidPtr = std::shared_ptr<HSigmoid>;
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_HSIGMOID_H_

View File

@ -675,14 +675,14 @@ class HSigmoid(Cell):
where :math:`x_{i}` is the :math:`i`-th slice in the given dimension of the input Tensor.
Inputs:
- **x** (Tensor) - The input of HSigmoid, data type must be float16 or float32.
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
- **input_x** (Tensor) - The input of HSigmoid. The shape is :math:`(N,*)` where :math:`*` means, any number of
additional dimensions.
Outputs:
Tensor, with the same type and shape as the `x`.
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If dtype of `x` is neither float16 nor float32.
TypeError: If `input_x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -27,9 +27,15 @@ hsigmoid_op_info = TBERegOp("HSigmoid") \
.attr("beta", "optional", "float", "all", "0.5") \
.input(0, "input_x", False, "required", "all") \
.output(0, "output_y", False, "required", "all") \
.op_pattern("formatAgnostic") \
.dtype_format(DataType.F16_None, DataType.F16_None) \
.dtype_format(DataType.F32_None, DataType.F32_None) \
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F16_NHWC, DataType.F16_NHWC) \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.dtype_format(DataType.F32_NHWC, DataType.F32_NHWC) \
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I32_5HD, DataType.I32_5HD) \
.dtype_format(DataType.I32_NHWC, DataType.I32_NHWC) \
.get_op_info()

View File

@ -1740,31 +1740,8 @@ class HSwishGrad(_ActivationGrad):
"""Gets the gradient of HSwish operation."""
class HSigmoidGrad(Primitive):
"""
Gets the gradient of HSigmoid operation.
Inputs:
- **grads** (Tensor) - The gradients of loss to output of HSigmoid function. Currently
grads data type only support float16 and float32.
- **input_x** (Tensor) - Must be the input `input_x` of the forward operator HSigmoid.
Currentlyinput_x data type only support float16 and float32.
Outputs:
- **output** (Tensor) - With the same shape and data type as `input_x`.
Raises:
TypeError: If shape of `grads` is not the same as `input_x`.
TypeError: If dtype of `grads` is not the same as `input_x`.
TypeError: If dtype of `grads` or `input_x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
"""
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['grads', 'input_x'], outputs=['output'])
class HSigmoidGrad(_ActivationGrad):
"""Gets the gradient of HSigmoid operation."""
class SigmoidCrossEntropyWithLogitsGrad(PrimitiveWithInfer):

View File

@ -794,6 +794,46 @@ class Sigmoid(PrimitiveWithInfer):
return input_x
class HSigmoid(Primitive):
r"""
Hard sigmoid activation function.
Applies hard sigmoid activation element-wise. The input is a Tensor with any valid shape.
Hard sigmoid is defined as:
.. math::
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{x_{i} + 3}{6})),
where :math:`x_i` is an element of the input Tensor.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If `input_x` is not a Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> hsigmoid = ops.HSigmoid()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mstype.float16)
>>> result = hsigmoid(input_x)
>>> print(result)
[0.3333 0.1666 0.5 0.8335 0.6665]
"""
@prim_attr_register
def __init__(self):
"""Initialize HSigmoid."""
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
class Tanh(PrimitiveWithInfer):
r"""
Tanh activation function.
@ -8667,43 +8707,3 @@ class SoftShrink(Primitive):
"""Initialize SoftShrink"""
validator.check_value_type("lambd", lambd, [float], self.name)
validator.check_number("lambd", lambd, 0, Rel.GE, self.name)
class HSigmoid(Primitive):
r"""
Hard sigmoid activation function.
Applies hard sigmoid activation element-wise. The input is a Tensor with any valid shape.
Hard sigmoid is defined as:
.. math::
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{x_{i} + 3}{6})),
where :math:`x_i` is an element of the input Tensor.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
additional dimensions, with float16 or float32 data type.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If `input_x` is not a Tensor.
TypeError: If dtype of `input_x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> hsigmoid = ops.HSigmoid()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mstype.float16)
>>> result = hsigmoid(input_x)
>>> print(result)
[0.3333 0.1666 0.5 0.8335 0.6665]
"""
@prim_attr_register
def __init__(self):
"""Initialize HSigmoid."""
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])

View File

@ -2154,6 +2154,7 @@ test_case_nn_ops = [
'desc_inputs': [Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]), mstype.float16),
Tensor(np.array([[-3, -2, 0], [1, 2, 4]]), mstype.float16)],
'desc_bprop': [],
'skip': ['backward']}),
('HSigmoidGrad', {
'block': G.HSigmoidGrad(),
'desc_inputs': [Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]), mstype.float16),