!42738 add the st of intergration of dynamic and static memory

Merge pull request !42738 from limingqi107/bug_fix3
This commit is contained in:
i-robot 2022-09-23 19:24:58 +00:00 committed by Gitee
commit 33b94acde2
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
2 changed files with 172 additions and 0 deletions

View File

@ -179,3 +179,33 @@ def test_fused_cast_adam_weight_decay():
res = train_network(data, label)
loss.append(res.asnumpy())
assert np.all(loss[-1] < 0.1)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_fused_cast_adam_weight_decay_with_memory_optimize():
'''
Feature: Integration of dynamic and static memory in the heterogeneous scene
Description: Test FusedCastAdamWeightDecay
Expectation: Run lenet success
'''
context.set_context(mode=context.GRAPH_MODE, memory_optimize_level="O1")
data = Tensor(np.ones([32, 3, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32))
net = LeNet()
net.batch_size = 32
learning_rate = 0.01
optimizer = FusedAdamWeightDecayWithGlobalNorm(filter(lambda x: x.requires_grad, net.get_parameters()),
learning_rate)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer)
train_network.set_train()
loss = []
for _ in range(10):
res = train_network(data, label)
loss.append(res.asnumpy())
assert np.all(loss[-1] < 0.1)

View File

@ -0,0 +1,142 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytest
from mindspore import context, nn, Tensor
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.common.parameter import Parameter
import mindspore.common.dtype as mstype
grad_all = C.GradOperation(get_all=True)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_while_grad_with_memory_optimize():
"""
Feature: Integration of dynamic and static memory.
Description: Test the control flow scene.
Expectation: The result meet expectation.
"""
class MyWhileNet(nn.Cell):
def __init__(self):
super().__init__()
self.max = P.ReduceMax()
def construct(self, idx, end, x):
while idx < end:
part = x[idx, :, :]
max_num = self.max(part)
x[idx, :, 0:2] = max_num
idx = idx + 1
return x
class GradNet(nn.Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.net = net
def construct(self, *inputs):
return grad_all(self.net)(*inputs)
idx = Tensor(np.array(0), dtype=mstype.int32)
end = Tensor(np.array(2), dtype=mstype.int32)
input_x = np.array([[[4, 0], [0, 0]],
[[0, 4], [0, 0]]]).astype(np.float32)
x = Tensor(input_x, dtype=mstype.float32)
# memory optimize mode
context.set_context(mode=context.GRAPH_MODE, memory_optimize_level="O1")
while_net = MyWhileNet()
net = GradNet(while_net)
graph_output = net(idx, end, x)
expect_zero = np.array([0], dtype=np.float32)
expect_two = input_x
assert np.allclose(graph_output[0].asnumpy(), expect_zero, 0.0001, 0.0001)
assert np.allclose(graph_output[1].asnumpy(), expect_zero, 0.0001, 0.0001)
assert np.allclose(graph_output[2].asnumpy(), expect_two, 0.0001, 0.0001)
class SparseApplyFtrlNet(nn.Cell):
def __init__(self, var, accum, linear, lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5):
super(SparseApplyFtrlNet, self).__init__()
self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=lr, l1=l1, l2=l2, lr_power=lr_power)
self.var = Parameter(var, name="var")
self.accum = Parameter(accum, name="accum")
self.linear = Parameter(linear, name="linear")
def construct(self, grad, indices):
out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
return out
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_sparse_apply_ftrl_with_memory_optimize():
"""
Feature: Integration of dynamic and static memory.
Description: Test the scene of output ref node.
Expectation: The result meet expectation.
"""
context.set_context(mode=context.GRAPH_MODE, memory_optimize_level="O1")
grad_np = np.ones([3, 3, 3])
indice_np = [0, 1, 2]
var_np = np.ones([3, 3, 3])
accum_np = np.ones([3, 3, 3])
linear_np = np.ones([3, 3, 3])
# test1: var/accum/linear/gradient are float32 and indices is int32.
gradient = Tensor(grad_np, dtype=mstype.float32)
indices = Tensor(indice_np, dtype=mstype.int32)
var = Tensor(var_np, dtype=mstype.float32)
accum = Tensor(accum_np, dtype=mstype.float32)
linear = Tensor(linear_np, dtype=mstype.float32)
sparse_apply_ftrl = SparseApplyFtrlNet(var, accum, linear)
out = sparse_apply_ftrl(gradient, indices)
expect_var = np.array([[[0.291479, 0.291479, 0.291479],
[0.291479, 0.291479, 0.291479],
[0.291479, 0.291479, 0.291479]],
[[0.291479, 0.291479, 0.291479],
[0.291479, 0.291479, 0.291479],
[0.291479, 0.291479, 0.291479]],
[[0.291479, 0.291479, 0.291479],
[0.291479, 0.291479, 0.291479],
[0.291479, 0.291479, 0.291479]]]).astype(np.float32)
assert np.all(out[0].asnumpy() == expect_var)
# test2: var/accum/linear/gradient are float16 and indices is int32.
gradient = Tensor(grad_np, dtype=mstype.float16)
indices = Tensor(indice_np, dtype=mstype.int32)
var = Tensor(var_np, dtype=mstype.float16)
accum = Tensor(accum_np, dtype=mstype.float16)
linear = Tensor(linear_np, dtype=mstype.float16)
sparse_apply_ftrl = SparseApplyFtrlNet(var, accum, linear)
out = sparse_apply_ftrl(gradient, indices)
expect_var = np.array([[[0.2915, 0.2915, 0.2915],
[0.2915, 0.2915, 0.2915],
[0.2915, 0.2915, 0.2915]],
[[0.2915, 0.2915, 0.2915],
[0.2915, 0.2915, 0.2915],
[0.2915, 0.2915, 0.2915]],
[[0.2915, 0.2915, 0.2915],
[0.2915, 0.2915, 0.2915],
[0.2915, 0.2915, 0.2915]]]).astype(np.float16)
assert np.all(out[0].asnumpy() == expect_var)