!14072 for r1.2, Add nn.Conv3d and nn.Conv3dTranspose.
From: @liu_xiao_93 Reviewed-by: @liangchenghui,@c_34 Signed-off-by: @liangchenghui,@c_34
This commit is contained in:
commit
331de218f1
|
@ -21,11 +21,11 @@ from mindspore.ops.primitive import constexpr
|
||||||
from mindspore.common.parameter import Parameter
|
from mindspore.common.parameter import Parameter
|
||||||
from mindspore.common.initializer import initializer
|
from mindspore.common.initializer import initializer
|
||||||
from mindspore.common.tensor import Tensor
|
from mindspore.common.tensor import Tensor
|
||||||
from mindspore._checkparam import Validator, Rel, twice
|
from mindspore._checkparam import Validator, Rel, twice, triple
|
||||||
from mindspore._extends import cell_attr_register
|
from mindspore._extends import cell_attr_register
|
||||||
from ..cell import Cell
|
from ..cell import Cell
|
||||||
|
|
||||||
__all__ = ['Conv2d', 'Conv2dTranspose', 'Conv1d', 'Conv1dTranspose']
|
__all__ = ['Conv2d', 'Conv2dTranspose', 'Conv1d', 'Conv1dTranspose', 'Conv3d', 'Conv3dTranspose']
|
||||||
|
|
||||||
|
|
||||||
class _Conv(Cell):
|
class _Conv(Cell):
|
||||||
|
@ -55,9 +55,11 @@ class _Conv(Cell):
|
||||||
self.pad_mode = pad_mode
|
self.pad_mode = pad_mode
|
||||||
self.weight_init = weight_init
|
self.weight_init = weight_init
|
||||||
self.bias_init = bias_init
|
self.bias_init = bias_init
|
||||||
self.format = Validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.cls_name)
|
self.format = Validator.check_string(data_format, ['NCHW', 'NHWC', 'NCDHW'], 'format', self.cls_name)
|
||||||
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
|
||||||
raise ValueError("NHWC format only support in GPU target.")
|
raise ValueError("NHWC format only support in GPU target.")
|
||||||
|
if context.get_context("device_target") != "Ascend" and self.format == "NCDHW":
|
||||||
|
raise ValueError("NCDHW format only support in Ascend target.")
|
||||||
if isinstance(padding, int):
|
if isinstance(padding, int):
|
||||||
Validator.check_non_negative_int(padding, 'padding', self.cls_name)
|
Validator.check_non_negative_int(padding, 'padding', self.cls_name)
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
|
@ -71,30 +73,23 @@ class _Conv(Cell):
|
||||||
self.dilation = dilation
|
self.dilation = dilation
|
||||||
self.group = Validator.check_positive_int(group)
|
self.group = Validator.check_positive_int(group)
|
||||||
self.has_bias = has_bias
|
self.has_bias = has_bias
|
||||||
if (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
|
for kernel_size_elem in kernel_size:
|
||||||
isinstance(kernel_size[0], bool) or isinstance(kernel_size[1], bool) or \
|
Validator.check_positive_int(kernel_size_elem, 'kernel_size item', self.cls_name)
|
||||||
kernel_size[0] < 1 or kernel_size[1] < 1:
|
for stride_elem in stride:
|
||||||
raise ValueError("Attr 'kernel_size' of 'Conv2D' Op passed "
|
Validator.check_positive_int(stride_elem, 'stride item', self.cls_name)
|
||||||
+ str(self.kernel_size) + ", should be a int or tuple and equal to or greater than 1.")
|
for dilation_elem in dilation:
|
||||||
if (not isinstance(stride[0], int)) or (not isinstance(stride[1], int)) or \
|
Validator.check_positive_int(dilation_elem, 'dilation item', self.cls_name)
|
||||||
isinstance(stride[0], bool) or isinstance(stride[1], bool) or stride[0] < 1 or stride[1] < 1:
|
|
||||||
raise ValueError("Attr 'stride' of 'Conv2D' Op passed "
|
|
||||||
+ str(self.stride) + ", should be a int or tuple and equal to or greater than 1.")
|
|
||||||
if (not isinstance(dilation[0], int)) or (not isinstance(dilation[1], int)) or \
|
|
||||||
isinstance(dilation[0], bool) or isinstance(dilation[1], bool) or dilation[0] < 1 or dilation[1] < 1:
|
|
||||||
raise ValueError("Attr 'dilation' of 'Conv2D' Op passed "
|
|
||||||
+ str(self.dilation) + ", should be a int or tuple and equal to or greater than 1.")
|
|
||||||
if in_channels % group != 0:
|
if in_channels % group != 0:
|
||||||
raise ValueError("Attr 'in_channels' of 'Conv2D' Op must be divisible by "
|
raise ValueError(f"Attr 'in_channels' of {self.cls_name} Op must be divisible by "
|
||||||
"attr 'group' of 'Conv2D' Op.")
|
f"attr 'group' of {self.cls_name} Op.")
|
||||||
if out_channels % group != 0:
|
if out_channels % group != 0:
|
||||||
raise ValueError("Attr 'out_channels' of 'Conv2D' Op must be divisible by "
|
raise ValueError(f"Attr 'out_channels' {self.cls_name} Op must be divisible by "
|
||||||
"attr 'group' of 'Conv2D' Op.")
|
f"attr 'group' of {self.cls_name} Op.")
|
||||||
if transposed:
|
if transposed:
|
||||||
shape = [in_channels, out_channels // group, *kernel_size]
|
shape = [in_channels, out_channels // group, *kernel_size]
|
||||||
else:
|
else:
|
||||||
shape = [out_channels, in_channels // group, *kernel_size] if self.format == "NCHW" else \
|
shape = [out_channels, *kernel_size, in_channels // group] if self.format == "NHWC" else \
|
||||||
[out_channels, *kernel_size, in_channels // group]
|
[out_channels, in_channels // group, *kernel_size]
|
||||||
self.weight = Parameter(initializer(self.weight_init, shape), name='weight')
|
self.weight = Parameter(initializer(self.weight_init, shape), name='weight')
|
||||||
|
|
||||||
if Validator.check_bool(has_bias):
|
if Validator.check_bool(has_bias):
|
||||||
|
@ -476,6 +471,361 @@ class Conv1d(_Conv):
|
||||||
return s
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
@constexpr
|
||||||
|
def _check_input_5dims(input_shape, op_name):
|
||||||
|
if len(input_shape) != 5:
|
||||||
|
raise ValueError(f"For {op_name}, input should be 5 dims, but got shape {input_shape}.")
|
||||||
|
|
||||||
|
|
||||||
|
class Conv3d(_Conv):
|
||||||
|
r"""
|
||||||
|
3D convolution layer.
|
||||||
|
|
||||||
|
Applies a 3D convolution over an input tensor which is typically of shape
|
||||||
|
For input shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` and output shape
|
||||||
|
:math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`. where :math:`N` is batch size. :math:`C` is channel number.
|
||||||
|
the formula is defined as:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
\operatorname{out}\left(N_{i}, C_{\text {out}_j}\right)=\operatorname{bias}\left(C_{\text {out}_j}\right)+
|
||||||
|
\sum_{k=0}^{C_{in}-1} ccor(\text {weight}\left(C_{\text {out}_j}, k\right),
|
||||||
|
\operatorname{input}\left(N_{i}, k\right))
|
||||||
|
|
||||||
|
where :math:`ccor` is the cross-correlation operator.
|
||||||
|
|
||||||
|
If the 'pad_mode' is set to be "valid", the output height and width will be
|
||||||
|
:math:`\left \lfloor{1 + \frac{D_{in} + 2 \times \text{padding} - \text{ks_d} -
|
||||||
|
(\text{ks_d} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and
|
||||||
|
:math:`\left \lfloor{1 + \frac{H_{in} + 2 \times \text{padding} - \text{ks_h} -
|
||||||
|
(\text{ks_h} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and
|
||||||
|
:math:`\left \lfloor{1 + \frac{W_{in} + 2 \times \text{padding} - \text{ks_w} -
|
||||||
|
(\text{ks_w} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` respectively.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): The number of input channel :math:`C_{in}`.
|
||||||
|
out_channels (int): The number of output channel :math:`C_{out}`.
|
||||||
|
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the height
|
||||||
|
and width of the 3D convolution window. Single int means the value is for the depth, height and the width
|
||||||
|
of the kernel. A tuple of 3 ints means the first value is for the depth, second value is for height
|
||||||
|
and the other is for the width of the kernel.
|
||||||
|
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
|
the depth, height and width of movement are both strides, or a tuple of three int numbers that
|
||||||
|
represent depth, height and width of movement respectively. Default: 1.
|
||||||
|
pad_mode (str): Specifies padding mode. The optional values are
|
||||||
|
"same", "valid", "pad". Default: "same".
|
||||||
|
|
||||||
|
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
|
||||||
|
the input. The total number of padding will be calculated in depth, horizontal and vertical
|
||||||
|
directions and evenly distributed to head and tail, top and bottom, left and right if possible.
|
||||||
|
Otherwise, the last extra padding will be done from the tail, bottom and the right side.
|
||||||
|
If this mode is set, `padding` must be 0.
|
||||||
|
|
||||||
|
- valid: Adopts the way of discarding. The possible largest depth, height and width of output
|
||||||
|
will be returned without padding. Extra pixels will be discarded. If this mode is set, `padding`
|
||||||
|
must be 0.
|
||||||
|
|
||||||
|
- pad: Implicit paddings on both sides of the input in depth, height, width. The number of `padding` will
|
||||||
|
be padded to the input Tensor borders. `padding` must be greater than or equal to 0.
|
||||||
|
|
||||||
|
padding (Union(int, tuple[int])): Implicit paddings on both sides of the input.
|
||||||
|
The data type is int or a tuple of 6 integers. Default: 0. If `padding` is an integer,
|
||||||
|
the paddings of head, tail, top, bottom, left and right are the same, equal to padding.
|
||||||
|
If `paddings` is a tuple of three integers, the padding of head, tail, top, bottom, left and right equal to
|
||||||
|
padding[0], padding[1], padding[2], padding[3], padding[4] and padding[5] correspondingly.
|
||||||
|
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers
|
||||||
|
: math:`(dilation_d, dilation_h, dilation_w)`. Currently, dilation on depth only supports the case of 1.
|
||||||
|
Specifies the dilation rate to use for dilated convolution. If set to be :math:`k > 1`,
|
||||||
|
there will be :math:`k - 1` pixels skipped for each sampling location.
|
||||||
|
Its value must be greater or equal to 1 and bounded by the height and width of the input. Default: 1.
|
||||||
|
group (int): Splits filter into groups, `in_ channels` and `out_channels` must be
|
||||||
|
divisible by the number of groups. Default: 1. Only 1 is currently supported.
|
||||||
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
|
||||||
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
|
||||||
|
It can be a Tensor, a string, an Initializer or a number. When a string is specified,
|
||||||
|
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
|
||||||
|
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
|
||||||
|
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
|
||||||
|
Initializer for more details. Default: 'normal'.
|
||||||
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
|
||||||
|
Initializer and string are the same as 'weight_init'. Refer to the values of
|
||||||
|
Initializer for more details. Default: 'zeros'.
|
||||||
|
data_format (str): The optional value for data format. Currently only support "NCDHW".
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
|
||||||
|
Currently input data type only support float16 and float32.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, the value that applied 3D convolution. The shape is :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
TypeError: If `in_channels`, `out_channels` or `group` is not an int.
|
||||||
|
TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int not a tuple of three.
|
||||||
|
ValueError: If `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
|
||||||
|
ValueError: If `padding` is less than 0.
|
||||||
|
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
|
||||||
|
ValueError: If `padding` is a tuple whose length is not equal to 6.
|
||||||
|
ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0, 0, 0).
|
||||||
|
ValueError: If `data_format` is not 'NCDHW'.
|
||||||
|
|
||||||
|
Supported Platforms:
|
||||||
|
``Ascend``
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> input = Tensor(np.ones([16, 3, 10, 32, 32]), mindspore.float32)
|
||||||
|
>>> conv3d = nn.Conv3d(in_channels=3, out_channels=32, kernel_size=(4, 3, 3))
|
||||||
|
>>> output = conv3d(input)
|
||||||
|
>>> print(output.shape)
|
||||||
|
(16, 32, 10, 32, 32)
|
||||||
|
"""
|
||||||
|
|
||||||
|
@cell_attr_register
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=1,
|
||||||
|
pad_mode='same',
|
||||||
|
padding=0,
|
||||||
|
dilation=1,
|
||||||
|
group=1,
|
||||||
|
has_bias=False,
|
||||||
|
weight_init='normal',
|
||||||
|
bias_init='zeros',
|
||||||
|
data_format='NCDHW'):
|
||||||
|
kernel_size = triple(kernel_size)
|
||||||
|
stride = triple(stride)
|
||||||
|
dilation = triple(dilation)
|
||||||
|
Validator.check_value_type('padding', padding, (int, tuple), self.cls_name)
|
||||||
|
if isinstance(padding, tuple):
|
||||||
|
Validator.check_equal_int(len(padding), 6, 'padding size', self.cls_name)
|
||||||
|
super(Conv3d, self).__init__(
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
stride,
|
||||||
|
pad_mode,
|
||||||
|
padding,
|
||||||
|
dilation,
|
||||||
|
group,
|
||||||
|
has_bias,
|
||||||
|
weight_init,
|
||||||
|
bias_init,
|
||||||
|
data_format)
|
||||||
|
self.conv3d = P.Conv3D(out_channel=self.out_channels,
|
||||||
|
kernel_size=self.kernel_size,
|
||||||
|
mode=1,
|
||||||
|
pad_mode=self.pad_mode,
|
||||||
|
pad=self.padding,
|
||||||
|
stride=self.stride,
|
||||||
|
dilation=self.dilation,
|
||||||
|
group=self.group,
|
||||||
|
data_format=self.format)
|
||||||
|
self.bias_add = P.BiasAdd(data_format=self.format)
|
||||||
|
self.shape = P.Shape()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x_shape = self.shape(x)
|
||||||
|
_check_input_5dims(x_shape, self.cls_name)
|
||||||
|
output = self.conv3d(x, self.weight)
|
||||||
|
if self.has_bias:
|
||||||
|
output = self.bias_add(output, self.bias)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def extend_repr(self):
|
||||||
|
s = 'input_channels={}, output_channels={}, kernel_size={},' \
|
||||||
|
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
|
||||||
|
'group={}, has_bias={}' \
|
||||||
|
'weight_init={}, bias_init={}, format={}'.format(
|
||||||
|
self.in_channels,
|
||||||
|
self.out_channels,
|
||||||
|
self.kernel_size,
|
||||||
|
self.stride,
|
||||||
|
self.pad_mode,
|
||||||
|
self.padding,
|
||||||
|
self.dilation,
|
||||||
|
self.group,
|
||||||
|
self.has_bias,
|
||||||
|
self.weight_init,
|
||||||
|
self.bias_init,
|
||||||
|
self.format)
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
class Conv3dTranspose(_Conv):
|
||||||
|
r"""
|
||||||
|
Compute a 3D transposed convolution, which is also known as a deconvolution
|
||||||
|
(although it is not an actual deconvolution).
|
||||||
|
|
||||||
|
Input is typically of shape :math:`(N, C, D, H, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
||||||
|
|
||||||
|
If the 'pad_mode' is set to be "pad", the height and width of output are defined as:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
D_{out} = (D_{in} - 1) \times \text{stride_d} - 2 \times \text{padding_d} + \text{dilation_d} \times
|
||||||
|
(\text{kernel_size_d} - 1) + \text{output_padding_d} + 1
|
||||||
|
|
||||||
|
H_{out} = (H_{in} - 1) \times \text{stride_h} - 2 \times \text{padding_h} + \text{dilation_h} \times
|
||||||
|
(\text{kernel_size_h} - 1) + \text{output_padding_h} + 1
|
||||||
|
|
||||||
|
W_{out} = (W_{in} - 1) \times \text{stride_w} - 2 \times \text{padding_w} + \text{dilation_w} \times
|
||||||
|
(\text{kernel_size_w} - 1) + \text{output_padding_w} + 1
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_channels (int): The number of input channel :math:`C_{in}`.
|
||||||
|
out_channels (int): The number of output channel :math:`C_{out}`.
|
||||||
|
kernel_size (Union[int, tuple[int]]): The kernel size of the 3D convolution.
|
||||||
|
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
|
the depth, height and width of movement are both strides, or a tuple of three int numbers that
|
||||||
|
represent depth, height and width of movement respectively. Its value must be equal to or greater than 1.
|
||||||
|
Default: 1.
|
||||||
|
pad_mode (str): Select the mode of the pad. The optional values are
|
||||||
|
"pad", "same", "valid". Default: "same".
|
||||||
|
|
||||||
|
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
|
||||||
|
the input. The total number of padding will be calculated in depth, horizontal and vertical
|
||||||
|
directions and evenly distributed to head and tail, top and bottom, left and right if possible.
|
||||||
|
Otherwise, the last extra padding will be done from the tail, bottom and the right side.
|
||||||
|
If this mode is set, `padding` and `output_padding` must be 0.
|
||||||
|
|
||||||
|
- valid: Adopts the way of discarding. The possible largest depth, height and width of output
|
||||||
|
will be returned without padding. Extra pixels will be discarded. If this mode is set, `padding`
|
||||||
|
and `output_padding` must be 0.
|
||||||
|
|
||||||
|
- pad: Implicit paddings on both sides of the input in depth, height, width. The number of `pad` will
|
||||||
|
be padded to the input Tensor borders. `padding` must be greater than or equal to 0.
|
||||||
|
|
||||||
|
padding (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `padding` is an integer,
|
||||||
|
the paddings of head, tail, top, bottom, left and right are the same, equal to padding.
|
||||||
|
If `padding` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equal to
|
||||||
|
padding[0], padding[1], padding[2], padding[3], padding[4] and padding[5] correspondingly.
|
||||||
|
dilation (Union(int, tuple[int])): The data type is int or a tuple of 3 integers
|
||||||
|
: math:`(dilation_d, dilation_h, dilation_w)`. Currently, dilation on depth only supports the case of 1.
|
||||||
|
Specifies the dilation rate to use for dilated convolution. If set to be :math:`k > 1`,
|
||||||
|
there will be :math:`k - 1` pixels skipped for each sampling location.
|
||||||
|
Its value must be greater or equal to 1 and bounded by the height and width of the input. Default: 1.
|
||||||
|
group (int): Splits filter into groups, `in_ channels` and `out_channels` must be
|
||||||
|
divisible by the number of groups. Default: 1. Only 1 is currently supported.
|
||||||
|
output_padding (Union(int, tuple[int])): Add extra size to each dimension of the output. Default: 0.
|
||||||
|
Must be greater than or equal to 0.
|
||||||
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
|
||||||
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
|
||||||
|
It can be a Tensor, a string, an Initializer or a number. When a string is specified,
|
||||||
|
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
|
||||||
|
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
|
||||||
|
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
|
||||||
|
Initializer for more details. Default: 'normal'.
|
||||||
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
|
||||||
|
Initializer and string are the same as 'weight_init'. Refer to the values of
|
||||||
|
Initializer for more details. Default: 'zeros'.
|
||||||
|
data_format (str): The optional value for data format. Currently only support 'NCDHW'.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
|
||||||
|
Currently input data type only support float16 and float32.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, the shape is :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`.
|
||||||
|
|
||||||
|
Supported Platforms:
|
||||||
|
``Ascend``
|
||||||
|
|
||||||
|
Raise:
|
||||||
|
TypeError: If `in_channels`, `out_channels` or `group` is not an int.
|
||||||
|
TypeError: If `kernel_size`, `stride`, `padding` , `dilation` or `output_padding`
|
||||||
|
is neither an int not a tuple of three.
|
||||||
|
TypeError: If input data type is not float16 or float32.
|
||||||
|
ValueError: If `in_channels`, `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
|
||||||
|
ValueError: If `padding` is less than 0.
|
||||||
|
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
|
||||||
|
ValueError: If `padding` is a tuple whose length is not equal to 6.
|
||||||
|
ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0, 0, 0).
|
||||||
|
ValueError: If `data_format` is not 'NCDHW'.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> input = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float32)
|
||||||
|
>>> conv3d_transpose = nn.Conv3dTranspose(in_channels=16, out_channels=3, kernel_size=(4, 6, 2), pad_mode='pad')
|
||||||
|
>>> output = conv3d_transpose(input)
|
||||||
|
>>> print(output.shape)
|
||||||
|
(32, 3, 13, 37, 33)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=1,
|
||||||
|
pad_mode='same',
|
||||||
|
padding=0,
|
||||||
|
dilation=1,
|
||||||
|
group=1,
|
||||||
|
output_padding=0,
|
||||||
|
has_bias=False,
|
||||||
|
weight_init='normal',
|
||||||
|
bias_init='zeros',
|
||||||
|
data_format='NCDHW'):
|
||||||
|
kernel_size = triple(kernel_size)
|
||||||
|
stride = triple(stride)
|
||||||
|
dilation = triple(dilation)
|
||||||
|
Validator.check_value_type('padding', padding, (int, tuple), self.cls_name)
|
||||||
|
if isinstance(padding, tuple):
|
||||||
|
Validator.check_equal_int(len(padding), 6, 'padding size', self.cls_name)
|
||||||
|
output_padding = triple(output_padding)
|
||||||
|
super(Conv3dTranspose, self).__init__(
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
stride,
|
||||||
|
pad_mode,
|
||||||
|
padding,
|
||||||
|
dilation,
|
||||||
|
group,
|
||||||
|
has_bias,
|
||||||
|
weight_init,
|
||||||
|
bias_init,
|
||||||
|
data_format,
|
||||||
|
transposed=True)
|
||||||
|
self.conv3d_transpose = P.Conv3DTranspose(in_channel=self.in_channels,
|
||||||
|
out_channel=self.out_channels,
|
||||||
|
kernel_size=self.kernel_size,
|
||||||
|
mode=1,
|
||||||
|
pad_mode=self.pad_mode,
|
||||||
|
pad=self.padding,
|
||||||
|
stride=self.stride,
|
||||||
|
dilation=self.dilation,
|
||||||
|
group=self.group,
|
||||||
|
output_padding=output_padding,
|
||||||
|
data_format=self.format)
|
||||||
|
self.bias_add = P.BiasAdd(data_format=self.format)
|
||||||
|
self.shape = P.Shape()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x_shape = self.shape(x)
|
||||||
|
_check_input_5dims(x_shape, self.cls_name)
|
||||||
|
output = self.conv3d_transpose(x, self.weight)
|
||||||
|
if self.has_bias:
|
||||||
|
output = self.bias_add(output, self.bias)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def extend_repr(self):
|
||||||
|
s = 'input_channels={}, output_channels={}, kernel_size={},' \
|
||||||
|
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
|
||||||
|
'group={}, has_bias={},' \
|
||||||
|
'weight_init={}, bias_init={}'.format(self.in_channels,
|
||||||
|
self.out_channels,
|
||||||
|
self.kernel_size,
|
||||||
|
self.stride,
|
||||||
|
self.pad_mode,
|
||||||
|
self.padding,
|
||||||
|
self.dilation,
|
||||||
|
self.group,
|
||||||
|
self.has_bias,
|
||||||
|
self.weight_init,
|
||||||
|
self.bias_init)
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
class Conv2dTranspose(_Conv):
|
class Conv2dTranspose(_Conv):
|
||||||
r"""
|
r"""
|
||||||
2D transposed convolution layer.
|
2D transposed convolution layer.
|
||||||
|
@ -501,7 +851,7 @@ class Conv2dTranspose(_Conv):
|
||||||
Args:
|
Args:
|
||||||
in_channels (int): The number of channels in the input space.
|
in_channels (int): The number of channels in the input space.
|
||||||
out_channels (int): The number of channels in the output space.
|
out_channels (int): The number of channels in the output space.
|
||||||
kernel_size (Union[int, tuple]): int or a tuple of 2 integers, which specifies the height
|
kernel_size (Union[int, tuple]): int or a tuple of 2 integers, which specifies the height
|
||||||
and width of the 2D convolution window. Single int means the value is for both the height and the width of
|
and width of the 2D convolution window. Single int means the value is for both the height and the width of
|
||||||
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
|
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
|
||||||
width of the kernel.
|
width of the kernel.
|
||||||
|
|
|
@ -89,13 +89,15 @@ def get_bprop_conv3d(self):
|
||||||
@bprop_getters.register(nps.Conv3DTranspose)
|
@bprop_getters.register(nps.Conv3DTranspose)
|
||||||
def get_bprop_conv3d_transpose(self):
|
def get_bprop_conv3d_transpose(self):
|
||||||
"""Grad definition for `Conv3DTranspose` operation."""
|
"""Grad definition for `Conv3DTranspose` operation."""
|
||||||
|
stride = (self.stride[2], self.stride[3], self.stride[4])
|
||||||
|
dilation = (self.dilation[2], self.dilation[3], self.dilation[4])
|
||||||
input_grad = nps.Conv3D(
|
input_grad = nps.Conv3D(
|
||||||
out_channel=self.in_channel, kernel_size=self.kernel_size, mode=self.mode, pad_mode="pad",
|
out_channel=self.in_channel, kernel_size=self.kernel_size, mode=self.mode, pad_mode="pad",
|
||||||
pad=self.pad, stride=self.stride, dilation=self.dilation, group=self.group, data_format=self.data_format
|
pad=self.pad_list, stride=stride, dilation=dilation, group=self.group, data_format=self.data_format
|
||||||
)
|
)
|
||||||
filter_grad = G.Conv3DBackpropFilter(
|
filter_grad = G.Conv3DBackpropFilter(
|
||||||
out_channel=self.in_channel, kernel_size=self.kernel_size, mode=self.mode, pad_mode="pad",
|
out_channel=self.in_channel, kernel_size=self.kernel_size, mode=self.mode, pad_mode="pad",
|
||||||
pad=self.pad, stride=self.stride, dilation=self.dilation, group=self.group, data_format=self.data_format
|
pad=self.pad_list, stride=self.stride, dilation=self.dilation, group=self.group, data_format=self.data_format
|
||||||
)
|
)
|
||||||
|
|
||||||
def bprop(x, w, out, dout):
|
def bprop(x, w, out, dout):
|
||||||
|
|
|
@ -62,7 +62,7 @@ from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, U
|
||||||
RandomCategorical, StandardLaplace, Multinomial, UniformCandidateSampler,
|
RandomCategorical, StandardLaplace, Multinomial, UniformCandidateSampler,
|
||||||
LogUniformCandidateSampler)
|
LogUniformCandidateSampler)
|
||||||
from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, AdamNoUpdateParam, ApplyMomentum, BatchNorm,
|
from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, AdamNoUpdateParam, ApplyMomentum, BatchNorm,
|
||||||
BiasAdd, Conv2D,
|
BiasAdd, Conv2D, Conv3D, Conv3DTranspose,
|
||||||
DepthwiseConv2dNative,
|
DepthwiseConv2dNative,
|
||||||
DropoutDoMask, Dropout, Dropout2D, Dropout3D, DropoutGenMask, Flatten,
|
DropoutDoMask, Dropout, Dropout2D, Dropout3D, DropoutGenMask, Flatten,
|
||||||
InstanceNorm, BNTrainingReduce, BNTrainingUpdate,
|
InstanceNorm, BNTrainingReduce, BNTrainingUpdate,
|
||||||
|
@ -139,6 +139,8 @@ __all__ = [
|
||||||
'Xdivy',
|
'Xdivy',
|
||||||
'Xlogy',
|
'Xlogy',
|
||||||
'Conv2D',
|
'Conv2D',
|
||||||
|
'Conv3D',
|
||||||
|
'Conv3DTranspose',
|
||||||
'Flatten',
|
'Flatten',
|
||||||
'MaxPoolWithArgmax',
|
'MaxPoolWithArgmax',
|
||||||
'BNTrainingReduce',
|
'BNTrainingReduce',
|
||||||
|
|
|
@ -7765,7 +7765,7 @@ class Conv3D(PrimitiveWithInfer):
|
||||||
for each sampling location. Its value must be greater or equal to 1 and
|
for each sampling location. Its value must be greater or equal to 1 and
|
||||||
bounded by the height and width of the input. Default: 1.
|
bounded by the height and width of the input. Default: 1.
|
||||||
group (int): Splits filter into groups, `in_ channels` and `out_channels` must be
|
group (int): Splits filter into groups, `in_ channels` and `out_channels` must be
|
||||||
divisible by the number of groups. Default: 1.
|
divisible by the number of groups. Default: 1. Only 1 is currently supported.
|
||||||
data_format (str): The optional value for data format. Currently only support "NCDHW".
|
data_format (str): The optional value for data format. Currently only support "NCDHW".
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
|
@ -7814,10 +7814,9 @@ class Conv3D(PrimitiveWithInfer):
|
||||||
"""Initialize Conv3D"""
|
"""Initialize Conv3D"""
|
||||||
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
|
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
|
||||||
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name)
|
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name)
|
||||||
self.stride = _check_3d_int_or_tuple('stride', stride, self.name, allow_five=True,
|
self.stride = _check_3d_int_or_tuple('stride', stride, self.name, allow_five=False, ret_five=True)
|
||||||
ret_five=True)
|
|
||||||
self.add_prim_attr('strides', self.stride)
|
self.add_prim_attr('strides', self.stride)
|
||||||
self.dilation = _check_3d_int_or_tuple('dilation', dilation, self.name, allow_five=True,
|
self.dilation = _check_3d_int_or_tuple('dilation', dilation, self.name, allow_five=False,
|
||||||
ret_five=True, third_one=True)
|
ret_five=True, third_one=True)
|
||||||
self.add_prim_attr('dilations', self.dilation)
|
self.add_prim_attr('dilations', self.dilation)
|
||||||
validator.check_value_type('pad', pad, (int, tuple), self.name)
|
validator.check_value_type('pad', pad, (int, tuple), self.name)
|
||||||
|
@ -7854,7 +7853,7 @@ class Conv3D(PrimitiveWithInfer):
|
||||||
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
|
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
|
||||||
self.add_prim_attr('data_format', self.format)
|
self.add_prim_attr('data_format', self.format)
|
||||||
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
|
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
|
||||||
self.group = validator.check_positive_int(group, 'group', self.name)
|
self.group = validator.check_equal_int(group, 1, 'group', self.name)
|
||||||
self.add_prim_attr('groups', self.group)
|
self.add_prim_attr('groups', self.group)
|
||||||
self.add_prim_attr('offset_x', 0)
|
self.add_prim_attr('offset_x', 0)
|
||||||
|
|
||||||
|
@ -8074,8 +8073,17 @@ class Conv3DBackpropInput(PrimitiveWithInfer):
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def _deconv_output_length(input_length, kernel_size, stride_size, dilation_size):
|
||||||
|
filter_size = kernel_size + (kernel_size - 1) * (dilation_size - 1)
|
||||||
|
if filter_size - stride_size > 0:
|
||||||
|
length = input_length * stride_size + filter_size - stride_size
|
||||||
|
else:
|
||||||
|
length = input_length * stride_size
|
||||||
|
return length
|
||||||
|
|
||||||
|
|
||||||
class Conv3DTranspose(PrimitiveWithInfer):
|
class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
"""
|
r"""
|
||||||
Compute a 3D transposed convolution, which is also known as a deconvolution
|
Compute a 3D transposed convolution, which is also known as a deconvolution
|
||||||
(although it is not an actual deconvolution).
|
(although it is not an actual deconvolution).
|
||||||
|
|
||||||
|
@ -8091,24 +8099,38 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
(\text{kernel_size_h} - 1) + \text{output_padding_h} + 1
|
(\text{kernel_size_h} - 1) + \text{output_padding_h} + 1
|
||||||
|
|
||||||
W_{out} = (W_{in} - 1) \times \text{stride_w} - 2 \times \text{padding_w} + \text{dilation_w} \times
|
W_{out} = (W_{in} - 1) \times \text{stride_w} - 2 \times \text{padding_w} + \text{dilation_w} \times
|
||||||
(\text{kernel_size_w} - 1) + 1
|
(\text{kernel_size_w} - 1) + \text{output_padding_w} + 1
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
in_channel (int): The channel of the input x.
|
in_channel (int): The channel of the input x.
|
||||||
out_channel (int): The channel of the weight x.
|
out_channel (int): The channel of the weight x.
|
||||||
kernel_size (Union[int, tuple[int]]): The kernel size of the 3D convolution.
|
kernel_size (Union[int, tuple[int]]): The kernel size of the 3D convolution.
|
||||||
mode (int): Modes for different convolutions. Default is 1. Not currently used.
|
mode (int): Modes for different convolutions. Default is 1. Not currently used.
|
||||||
|
pad_mode (str): Specifies padding mode. The optional values are
|
||||||
|
"same", "valid", "pad". Default: "valid".
|
||||||
|
|
||||||
|
- same: Adopts the way of completion. The depth, height and width of the output will be the same as
|
||||||
|
the input. The total number of padding will be calculated in depth, horizontal and vertical
|
||||||
|
directions and evenly distributed to head and tail, top and bottom, left and right if possible.
|
||||||
|
Otherwise, the last extra padding will be done from the tail, bottom and the right side.
|
||||||
|
If this mode is set, `pad` and `output_padding` must be 0.
|
||||||
|
|
||||||
|
- valid: Adopts the way of discarding. The possible largest depth, height and width of output
|
||||||
|
will be returned without padding. Extra pixels will be discarded. If this mode is set, `pad`
|
||||||
|
and `output_padding` must be 0.
|
||||||
|
|
||||||
|
- pad: Implicit paddings on both sides of the input in depth, height, width. The number of `pad` will
|
||||||
|
be padded to the input Tensor borders. `pad` must be greater than or equal to 0.
|
||||||
|
|
||||||
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
|
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
|
||||||
head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six integers,
|
head, tail, top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of six integers,
|
||||||
the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2], pad[3], pad[4]
|
the padding of head, tail, top, bottom, left and right equal to pad[0], pad[1], pad[2], pad[3], pad[4]
|
||||||
and pad[5] correspondingly.
|
and pad[5] correspondingly.
|
||||||
stride (Union(int, tuple[int])): The stride to be applied to the convolution filter. Default: 1.
|
stride (Union(int, tuple[int])): The stride to be applied to the convolution filter. Default: 1.
|
||||||
dilation (Union(int, tuple[int])): Specifies the space to use between kernel elements. Default: 1.
|
dilation (Union(int, tuple[int])): Specifies the space to use between kernel elements. Default: 1.
|
||||||
group (int): Splits input into groups. Default: 1.
|
group (int): Splits input into groups. Default: 1. Only 1 is currently supported.
|
||||||
output_padding (Union(int, tuple[int])): Add extra size to each dimension of the output. Default: 0.
|
output_padding (Union(int, tuple[int])): Add extra size to each dimension of the output. Default: 0.
|
||||||
data_format (str): The optional value for data format. Currently only support 'NCDHW'.
|
data_format (str): The optional value for data format. Currently only support 'NCDHW'.
|
||||||
input_size (tuple[int]): A tuple describes the shape of the input which conforms to the format
|
|
||||||
:math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`. Not currently used.
|
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **dout** (Tensor) - the gradients w.r.t the output of the convolution. The shape conforms to the default
|
- **dout** (Tensor) - the gradients w.r.t the output of the convolution. The shape conforms to the default
|
||||||
|
@ -8127,7 +8149,7 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
|
|
||||||
Raise:
|
Raise:
|
||||||
TypeError: If `in_channel`, `out_channel` or `group` is not an int.
|
TypeError: If `in_channel`, `out_channel` or `group` is not an int.
|
||||||
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int not a tuple.
|
TypeError: If `kernel_size`, `stride`, `pad` , `dilation` or `output_padding` is neither an int not a tuple.
|
||||||
ValueError: If `in_channel`, `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1.
|
ValueError: If `in_channel`, `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1.
|
||||||
ValueError: If `pad` is less than 0.
|
ValueError: If `pad` is less than 0.
|
||||||
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
|
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
|
||||||
|
@ -8152,6 +8174,7 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
out_channel,
|
out_channel,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
mode=1,
|
mode=1,
|
||||||
|
pad_mode='valid',
|
||||||
pad=0,
|
pad=0,
|
||||||
stride=1,
|
stride=1,
|
||||||
dilation=1,
|
dilation=1,
|
||||||
|
@ -8165,10 +8188,10 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
|
self.out_channel = validator.check_positive_int(out_channel, 'out_channel', self.name)
|
||||||
self.add_prim_attr('out_channel', self.out_channel)
|
self.add_prim_attr('out_channel', self.out_channel)
|
||||||
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name)
|
self.kernel_size = _check_3d_int_or_tuple('kernel_size', kernel_size, self.name)
|
||||||
self.stride = _check_3d_int_or_tuple('stride', stride, self.name, allow_five=True,
|
self.stride = _check_3d_int_or_tuple('stride', stride, self.name, allow_five=False,
|
||||||
ret_five=True)
|
ret_five=True)
|
||||||
self.add_prim_attr('strides', self.stride)
|
self.add_prim_attr('strides', self.stride)
|
||||||
self.dilation = _check_3d_int_or_tuple('dilation', dilation, self.name, allow_five=True,
|
self.dilation = _check_3d_int_or_tuple('dilation', dilation, self.name, allow_five=False,
|
||||||
ret_five=True, third_one=True)
|
ret_five=True, third_one=True)
|
||||||
self.add_prim_attr('dilations', self.dilation)
|
self.add_prim_attr('dilations', self.dilation)
|
||||||
validator.check_value_type('pad', pad, (int, tuple), self.name)
|
validator.check_value_type('pad', pad, (int, tuple), self.name)
|
||||||
|
@ -8178,8 +8201,15 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
raise ValueError(f"For `conv3d` attr 'pad' should be an positive int number or a tuple of "
|
raise ValueError(f"For `conv3d` attr 'pad' should be an positive int number or a tuple of "
|
||||||
f"six positive int numbers, but got `{len(pad)}`.")
|
f"six positive int numbers, but got `{len(pad)}`.")
|
||||||
self.pad_list = pad
|
self.pad_list = pad
|
||||||
for item in self.pad_list:
|
self.pad_mode = validator.check_string(pad_mode.lower(), ['valid', 'same', 'pad'], 'pad_mode', self.name)
|
||||||
validator.check_non_negative_int(item, 'pad item', self.name)
|
self.add_prim_attr('pad_mode', self.pad_mode)
|
||||||
|
|
||||||
|
if self.pad_mode != 'pad' and pad != (0, 0, 0, 0, 0, 0):
|
||||||
|
raise ValueError(f"For '{self.name}', when pad is not 0, pad_mode should be set as 'pad'.")
|
||||||
|
|
||||||
|
if self.pad_mode == 'pad':
|
||||||
|
for item in self.pad_list:
|
||||||
|
validator.check_non_negative_int(item, 'pad item', self.name)
|
||||||
validator.check_int_range(self.pad_list[0], 0, self.kernel_size[0], Rel.INC_LEFT,
|
validator.check_int_range(self.pad_list[0], 0, self.kernel_size[0], Rel.INC_LEFT,
|
||||||
'pad_d belonging [0, kernel_size_d)', self.name)
|
'pad_d belonging [0, kernel_size_d)', self.name)
|
||||||
validator.check_int_range(self.pad_list[1], 0, self.kernel_size[0], Rel.INC_LEFT,
|
validator.check_int_range(self.pad_list[1], 0, self.kernel_size[0], Rel.INC_LEFT,
|
||||||
|
@ -8194,13 +8224,16 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
'pad_w belonging [0, kernel_size_w)', self.name)
|
'pad_w belonging [0, kernel_size_w)', self.name)
|
||||||
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
|
self.mode = validator.check_equal_int(mode, 1, 'mode', self.name)
|
||||||
self.add_prim_attr('mode', self.mode)
|
self.add_prim_attr('mode', self.mode)
|
||||||
self.group = validator.check_positive_int(group, 'group', self.name)
|
self.mode = validator.check_equal_int(group, 1, 'group', self.name)
|
||||||
self.add_prim_attr('groups', self.group)
|
self.add_prim_attr('groups', self.group)
|
||||||
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
|
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.name)
|
||||||
self.add_prim_attr('data_format', self.format)
|
self.add_prim_attr('data_format', self.format)
|
||||||
|
|
||||||
self.output_padding = _check_3d_int_or_tuple('output_padding', output_padding, self.name,
|
self.output_padding = _check_3d_int_or_tuple('output_padding', output_padding, self.name,
|
||||||
allow_five=True, ret_five=True, greater_zero=False)
|
allow_five=False, ret_five=True, greater_zero=False)
|
||||||
|
output_padding = (self.output_padding[2], self.output_padding[3], self.output_padding[4])
|
||||||
|
if self.pad_mode != 'pad' and output_padding != (0, 0, 0):
|
||||||
|
raise ValueError(f"For '{self.name}', when output_padding is not 0, pad_mode should be set as 'pad'.")
|
||||||
validator.check_int_range(self.kernel_size[0]*self.kernel_size[1]*self.kernel_size[2], 1, 343, Rel.INC_BOTH,
|
validator.check_int_range(self.kernel_size[0]*self.kernel_size[1]*self.kernel_size[2], 1, 343, Rel.INC_BOTH,
|
||||||
'The product of height, width and depth of kernel_size belonging [1, 343]', self.name)
|
'The product of height, width and depth of kernel_size belonging [1, 343]', self.name)
|
||||||
validator.check_int_range(self.stride[0]*self.stride[1]*self.stride[2], 1, 343, Rel.INC_BOTH,
|
validator.check_int_range(self.stride[0]*self.stride[1]*self.stride[2], 1, 343, Rel.INC_BOTH,
|
||||||
|
@ -8213,7 +8246,6 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
'output_padding_h belonging [0, max(stride_h,dilation_h))', self.name)
|
'output_padding_h belonging [0, max(stride_h,dilation_h))', self.name)
|
||||||
validator.check_int_range(self.output_padding[4], 0, max(self.dilation[4], self.stride[4]), Rel.INC_LEFT,
|
validator.check_int_range(self.output_padding[4], 0, max(self.dilation[4], self.stride[4]), Rel.INC_LEFT,
|
||||||
'output_padding_w belonging [0, max(stride_w,dilation_w))', self.name)
|
'output_padding_w belonging [0, max(stride_w,dilation_w))', self.name)
|
||||||
self.add_prim_attr('output_padding', self.output_padding)
|
|
||||||
|
|
||||||
def __infer__(self, x, w, b=None):
|
def __infer__(self, x, w, b=None):
|
||||||
args = {'x': x['dtype'], 'w': w['dtype']}
|
args = {'x': x['dtype'], 'w': w['dtype']}
|
||||||
|
@ -8230,14 +8262,47 @@ class Conv3DTranspose(PrimitiveWithInfer):
|
||||||
validator.check("filter's batch", w_shape[0], "input x's channel",
|
validator.check("filter's batch", w_shape[0], "input x's channel",
|
||||||
x_shape[1], Rel.EQ, self.name)
|
x_shape[1], Rel.EQ, self.name)
|
||||||
|
|
||||||
|
kernel_d, kernel_h, kernel_w = self.kernel_size
|
||||||
|
_, _, stride_d, stride_h, stride_w = self.stride
|
||||||
|
_, _, dilation_d, dilation_h, dilation_w = self.dilation
|
||||||
|
|
||||||
|
if self.pad_mode == "valid":
|
||||||
|
d_out = _deconv_output_length(x_shape[2], kernel_d, stride_d, dilation_d)
|
||||||
|
h_out = _deconv_output_length(x_shape[3], kernel_h, stride_h, dilation_h)
|
||||||
|
w_out = _deconv_output_length(x_shape[4], kernel_w, stride_w, dilation_w)
|
||||||
|
self.pad_list = (0, 0, 0, 0, 0, 0)
|
||||||
|
self.output_padding = (0, 0, 0, 0, 0)
|
||||||
|
|
||||||
|
elif self.pad_mode == "same":
|
||||||
|
d_out = x_shape[2] * stride_d
|
||||||
|
h_out = x_shape[3] * stride_h
|
||||||
|
w_out = x_shape[4] * stride_w
|
||||||
|
|
||||||
|
pad_needed_d = max(0, (x_shape[2] - 1) * stride_d + dilation_d * (kernel_d - 1) + 1 - d_out)
|
||||||
|
pad_head = math.floor(pad_needed_d / 2)
|
||||||
|
pad_tail = pad_needed_d - pad_head
|
||||||
|
|
||||||
|
pad_needed_h = max(0, (x_shape[3] - 1) * stride_h + dilation_h * (kernel_h - 1) + 1 - h_out)
|
||||||
|
pad_top = math.floor(pad_needed_h / 2)
|
||||||
|
pad_bottom = pad_needed_h - pad_top
|
||||||
|
|
||||||
|
pad_needed_w = max(0, (x_shape[4] - 1) * stride_w + dilation_w * (kernel_w - 1) + 1 - w_out)
|
||||||
|
pad_left = math.floor(pad_needed_w / 2)
|
||||||
|
pad_right = pad_needed_w - pad_left
|
||||||
|
self.pad_list = (pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right)
|
||||||
|
self.output_padding = (0, 0, 0, 0, 0)
|
||||||
|
|
||||||
|
elif self.pad_mode == 'pad':
|
||||||
|
pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right = self.pad_list
|
||||||
|
d_out = (x_shape[2] - 1) * self.stride[2] - (pad_head + pad_tail) + self.dilation[2] * \
|
||||||
|
(self.kernel_size[0] - 1) + self.output_padding[2] + 1
|
||||||
|
h_out = (x_shape[3] - 1) * self.stride[3] - (pad_top + pad_bottom) + self.dilation[3] * \
|
||||||
|
(self.kernel_size[1] - 1) + self.output_padding[3] + 1
|
||||||
|
w_out = (x_shape[4] - 1) * self.stride[4] - (pad_left + pad_right) + self.dilation[4] * \
|
||||||
|
(self.kernel_size[2] - 1) + self.output_padding[4] + 1
|
||||||
|
|
||||||
self.add_prim_attr('pad_list', self.pad_list)
|
self.add_prim_attr('pad_list', self.pad_list)
|
||||||
pad_head, pad_tail, pad_top, pad_bottom, pad_left, pad_right = self.pad_list
|
self.add_prim_attr('output_padding', self.output_padding)
|
||||||
d_out = (x_shape[2] - 1) * self.stride[2] - (pad_head + pad_tail) + self.dilation[2] * \
|
|
||||||
(self.kernel_size[0] - 1) + self.output_padding[2] + 1
|
|
||||||
h_out = (x_shape[3] - 1) * self.stride[3] - (pad_top + pad_bottom) + self.dilation[3] * \
|
|
||||||
(self.kernel_size[1] - 1) + self.output_padding[3] + 1
|
|
||||||
w_out = (x_shape[4] - 1) * self.stride[4] - (pad_left + pad_right) + self.dilation[4] * \
|
|
||||||
(self.kernel_size[2] - 1) + self.output_padding[4] + 1
|
|
||||||
output_shape = (x_shape[0], w_shape[1]*self.group, d_out, h_out, w_out)
|
output_shape = (x_shape[0], w_shape[1]*self.group, d_out, h_out, w_out)
|
||||||
self.add_prim_attr('input_size', output_shape)
|
self.add_prim_attr('input_size', output_shape)
|
||||||
out = {
|
out = {
|
||||||
|
|
Loading…
Reference in New Issue