diff --git a/tests/st/heterogeneous/test_mem_scheduler.py b/tests/st/heterogeneous/test_mem_scheduler.py index 9eb7e3dbd27..f0c34b76661 100644 --- a/tests/st/heterogeneous/test_mem_scheduler.py +++ b/tests/st/heterogeneous/test_mem_scheduler.py @@ -154,10 +154,9 @@ def test_lenet_manual_offload(): os.environ['ENABLE_MEM_SCHEDULER'] = '0' -@pytest.mark.level1 +@pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training -@pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_1024_batch_size_resnet(): """ @@ -167,7 +166,7 @@ def test_1024_batch_size_resnet(): """ os.environ['GRAPH_OP_RUN'] = '1' num_classes = 10 - epoch = 4 + epoch = 6 batch_size = 1024 context.set_context(memory_offload='ON') net = resnet50(batch_size, num_classes) @@ -177,8 +176,7 @@ def test_1024_batch_size_resnet(): net.get_parameters()), lr, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_with_criterion = WithLossCell(net, criterion) - train_network = TrainOneStepCell( - net_with_criterion, optimizer) # optimizer + train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network.set_train() losses = [] for _ in range(0, epoch): @@ -187,5 +185,5 @@ def test_1024_batch_size_resnet(): label = Tensor(np.ones([batch_size]).astype(np.int32)) loss = train_network(data, label) losses.append(loss) - assert losses[-1].asnumpy() < 1 + assert losses[-1].asnumpy() < 1.5 os.environ['GRAPH_OP_RUN'] = '0'