diff --git a/docs/api/api_python/mindspore/Tensor/mindspore.Tensor.i0.rst b/docs/api/api_python/mindspore/Tensor/mindspore.Tensor.i0.rst index 0333e70c23c..ff5de5884ca 100644 --- a/docs/api/api_python/mindspore/Tensor/mindspore.Tensor.i0.rst +++ b/docs/api/api_python/mindspore/Tensor/mindspore.Tensor.i0.rst @@ -3,4 +3,4 @@ mindspore.Tensor.i0 .. py:method:: mindspore.Tensor.i0() - :func:`mindspore.Tensor.bessel_i0` 的别名。 + 详情请参考 :func:`mindspore.ops.i0`。 diff --git a/docs/api/api_python/mindspore/mindspore.CSRTensor.rst b/docs/api/api_python/mindspore/mindspore.CSRTensor.rst index 9e80f536375..512d4555a96 100644 --- a/docs/api/api_python/mindspore/mindspore.CSRTensor.rst +++ b/docs/api/api_python/mindspore/mindspore.CSRTensor.rst @@ -20,7 +20,7 @@ mindspore.CSRTensor 如果 `indptr` 或 `indices` 的值不合法,行为将没有定义。不合法的值包括当 `values` 或 `indices` 的长度超出了 `indptr` 所指定的取值范围,以及当 `indices` 在同一行中出现重复的列。 参数: - - **indptr** (Tensor) - shape为 :math:`(M)` 的一维整数Tensor,其中M等于 `shape[0] + 1` , 表示每行非零元素的在 `values` 中存储的起止位置。默认值:None。支持的数据类型为int16,int32和int64。 + - **indptr** (Tensor) - shape为 :math:`(M)` 的一维整数Tensor,其中M等于 `shape[0] + 1` ,表示每行非零元素的在 `values` 中存储的起止位置。默认值:None。支持的数据类型为int16,int32和int64。 - **indices** (Tensor) - shape为 :math:`(N)` 的一维整数Tensor,其中N等于非零元素数量,表示每个元素的列索引值。默认值:None。支持的数据类型为int16, int32和int64。 - **values** (Tensor) - Tensor,values的0维长度必须与indices的0维长度相等(values.shape[0] == indices.shape[0])。values用来表示索引对应的数值。默认值:None。 - **shape** (tuple(int)) - shape为ndims的整数元组,用来指定稀疏矩阵的稠密shape。`shape[0]` 表示行数,因此必须和 `M - 1` 值相等。默认值:None。 diff --git a/docs/api/api_python/ops/mindspore.ops.ComplexAbs.rst b/docs/api/api_python/ops/mindspore.ops.ComplexAbs.rst index 08c24783585..3303db5c532 100644 --- a/docs/api/api_python/ops/mindspore.ops.ComplexAbs.rst +++ b/docs/api/api_python/ops/mindspore.ops.ComplexAbs.rst @@ -12,7 +12,7 @@ - **x** (Tensor) - 复数Tensor,格式须为complex64或complex128。 输出: - Tensor。如果 `x` 的类型是complex64,则 `y` 的类型是float32;如果 `x` 的类型是complex128,则 `y` 的类型是float64。 + Tensor。如果 `x` 的类型是complex64,则输出的类型是float32;如果 `x` 的类型是complex128,则输出的类型是float64。 异常: - **TypeError** - 输入 `x` 不是Tensor。 diff --git a/docs/api/api_python/ops/mindspore.ops.Digamma.rst b/docs/api/api_python/ops/mindspore.ops.Digamma.rst index 81b0b4895e0..16f6ec27a66 100644 --- a/docs/api/api_python/ops/mindspore.ops.Digamma.rst +++ b/docs/api/api_python/ops/mindspore.ops.Digamma.rst @@ -11,12 +11,12 @@ .. warning:: 此算子为实验性算子,将来可能面临更改或删除。 - 输入: + 输入: - **x** (Tensor) - 输入Tensor。数据类型为 `float16` 、 `float32` 或者 `float64` 。 - 输出: + 输出: Tensor, 和输入 `x` 具有相同的数据类型。 - 异常: + 异常: - **TypeError** - 如果输入 `x` 不是Tensor。 - **TypeError** - 输入输入 `x` 的数据类型不是 `float16` 、 `float32` 或者 `float64` 。 diff --git a/docs/api/api_python/ops/mindspore.ops.Eig.rst b/docs/api/api_python/ops/mindspore.ops.Eig.rst index 8e21d06ef10..96eb2c73114 100644 --- a/docs/api/api_python/ops/mindspore.ops.Eig.rst +++ b/docs/api/api_python/ops/mindspore.ops.Eig.rst @@ -8,11 +8,11 @@ 参数: - **compute_v** (bool,可选) - 如果为True,同时计算特征值和特征向量,如果为False,只计算特征值,默认值:False。 - 输入: + 输入: - **x** (Tensor) - 方阵。shape为 :math:`(*, N, N)`,数据类型支持 float32、float64、complex64、complex128。 - 输出: + 输出: - **eigen_values** (Tensor) - shape为 :math:`(*, N)`,其中的每个向量代表对应矩阵的特征值,特征值之间没有顺序关系。 - **eigen_vectors** (Tensor) - 如果 `compute_v` 为False,此为空Tensor,否则,为shape :math:`(*, N, N)` 的Tensor。 其列表示相应特征值的规范化(单位长度)特征向量。 diff --git a/docs/api/api_python/ops/mindspore.ops.FractionalMaxPoolWithFixedKsize.rst b/docs/api/api_python/ops/mindspore.ops.FractionalMaxPoolWithFixedKsize.rst index e417689aeae..512bb265e49 100644 --- a/docs/api/api_python/ops/mindspore.ops.FractionalMaxPoolWithFixedKsize.rst +++ b/docs/api/api_python/ops/mindspore.ops.FractionalMaxPoolWithFixedKsize.rst @@ -12,10 +12,10 @@ mindspore.ops.FractionalMaxPoolWithFixedKsize 详细内容请参考论文 `Fractional Max-Pooling `_ 。 参数: - - **ksize** (Union[float, tuple]) - 用于取最大值的内核窗口的大小。目标 ksize 为 `H x W` 。ksize 可以是元组,也可以是 `K x K` 的单个K。 + - **ksize** (Union[int, tuple[int]]) - 用于取最大值的内核窗口的大小。目标 ksize 为 `H x W` 。ksize 可以是元组,也可以是 `K x K` 的单个K。 指明了输入Tensor的窗口大小 `(H, W)` 。 - - **output_shape** (Union[int, tuple]) - 目标输出shape为 `H x W` ,输出shape可以是一个元组,或者 `H x H` 的单个H。 + - **output_shape** (Union[int, tuple[int]]) - 目标输出shape为 `H x W` ,输出shape可以是一个元组,或者 `H x H` 的单个H。 指明了输出tensor的大小 `(H, W)` 。 - **data_format** (str,可选) - 可选的数据格式值,当前支持 `NCHW` ,默认为 `NCHW` 。 diff --git a/docs/api/api_python/ops/mindspore.ops.MatrixLogarithm.rst b/docs/api/api_python/ops/mindspore.ops.MatrixLogarithm.rst index cd6d368dacf..f8dd0027769 100644 --- a/docs/api/api_python/ops/mindspore.ops.MatrixLogarithm.rst +++ b/docs/api/api_python/ops/mindspore.ops.MatrixLogarithm.rst @@ -14,6 +14,6 @@ mindspore.ops.MatrixLogarithm 异常: - **TypeError** - 如果 `x` 不是Tensor。 - - **ValueError** - 如果 `x` 的数据类型不是complex64或complex128。 + - **TypeError** - 如果 `x` 的数据类型不是complex64或complex128。 - **ValueError** - 如果 `x` 的维度小于2。 - **ValueError** - 如果内部的两维不相等。 diff --git a/docs/api/api_python/ops/mindspore.ops.MaxUnpool2D.rst b/docs/api/api_python/ops/mindspore.ops.MaxUnpool2D.rst index 5be524ffc1a..ec29acaffc4 100644 --- a/docs/api/api_python/ops/mindspore.ops.MaxUnpool2D.rst +++ b/docs/api/api_python/ops/mindspore.ops.MaxUnpool2D.rst @@ -31,7 +31,7 @@ mindspore.ops.MaxUnpool2D - 如果 `pads` 是一个整数,则高度和宽度方向的填充数量相同,都等于 `pads` 。 - 如果 `pads` 是含两个整数的元组,高度和宽度方向的填充数量分别等于 `pads[0]` 和 `pads[1]` 。 - - **output_shape** (tuple[int],可选) 一个可选的输入,指定目标输出的尺寸。默认值:()。 + - **output_shape** (tuple[int],可选) - 一个可选的输入,指定目标输出的尺寸。默认值:()。 - 如果 `output_shape == ()` ,则输出的shape由 `kszie` 、 `strides` 和 `pads` 计算得到。 - 如果 :math:`output_shape != ()` ,则 `output_shape` 必须为 :math:`(N, C, H, W)` 或 :math:`(N, H, W, C)` , diff --git a/docs/api/api_python/ops/mindspore.ops.ScaleAndTranslate.rst b/docs/api/api_python/ops/mindspore.ops.ScaleAndTranslate.rst index f16028e69dc..4363840fe9e 100644 --- a/docs/api/api_python/ops/mindspore.ops.ScaleAndTranslate.rst +++ b/docs/api/api_python/ops/mindspore.ops.ScaleAndTranslate.rst @@ -27,12 +27,12 @@ mindspore.ops.ScaleAndTranslate - **TypeError** - `antialias` bool类型。 - **TypeError** - `images` 数据类型无效。 - **TypeError** - `size` 不是int32类型。 - - **TypeError** - `scale` 不是float32类型、。 + - **TypeError** - `scale` 不是float32类型。 - **TypeError** - `translation` 不是Tensor或者数据类型不是float32。 - **ValueError** - `kernel_type` 不在列表里面:["lanczos1", "lanczos3", "lanczos5", "gaussian", "box", "triangle", "keyscubic", "mitchellcubic"]。 - **ValueError** - `images` 的秩不等于4。 - **ValueError** - `size` 的shape不是 :math:`(2,)` 。 - - **ValueError** - `scale` 的shape不是 :math:`(2,)` - - **ValueError** - `translation` 的shape不是 :math:`(2,)` + - **ValueError** - `scale` 的shape不是 :math:`(2,)` 。 + - **ValueError** - `translation` 的shape不是 :math:`(2,)` 。 diff --git a/docs/api/api_python/ops/mindspore.ops.func_pad.rst b/docs/api/api_python/ops/mindspore.ops.func_pad.rst index 01a1be328b9..a4313b6b021 100644 --- a/docs/api/api_python/ops/mindspore.ops.func_pad.rst +++ b/docs/api/api_python/ops/mindspore.ops.func_pad.rst @@ -10,13 +10,13 @@ mindspore.ops.pad - **padding** (Union[tuple[int], list[int], Tensor]) - pad的填充位置。 :math:`\left\lfloor\frac{\text{len(padding)}}{2}\right\rfloor` 维度的 `input_x` 将会被填充。 - - 示例:若只需要填充输入tensor的最后一个维度,则 `padding` 则的填充方式为:math:`(\text{padding\_left}, \text{padding\_right})`; - - 示例:若只需要填充输入tensor的最后两个维度,则 `padding` 则的填充方式为:math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom})`; - - 示例:若只需要填充输入tensor的最后三个维度,则 `padding` 则的填充方式为:math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom}, \text{padding\_front}, \text{padding\_back}))`; + - 示例:若只需要填充输入tensor的最后一个维度,则 `padding` 则的填充方式为 :math:`(\text{padding\_left}, \text{padding\_right})`; + - 示例:若只需要填充输入tensor的最后两个维度,则 `padding` 则的填充方式为 :math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom})`; + - 示例:若只需要填充输入tensor的最后三个维度,则 `padding` 则的填充方式为 :math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom}, \text{padding\_front}, \text{padding\_back}))`; 以此类推。 - - **mode** (str,可选) - Pad的填充模式,可选择 "constant", "reflect" 或者 "replicate"。 默认值: "constant"。 + - **mode** (str,可选) - Pad的填充模式,可选择 "constant", "reflect" 或者 "replicate"。默认值:"constant"。 - 对于 "constant" 模式,请参考 :class:`mindspore.nn.ConstantPad1d` 作为示例来理解这个填充模式,并将这个模式扩展到n维。 - 对于 "reflect" 模式,请参考 :class:`mindspore.nn.ReflectionPad1d` 作为示例来理解这个填充模式,并将这个模式扩展到n维。 diff --git a/mindspore/python/mindspore/common/sparse_tensor.py b/mindspore/python/mindspore/common/sparse_tensor.py index c6764b82a34..87f55575745 100644 --- a/mindspore/python/mindspore/common/sparse_tensor.py +++ b/mindspore/python/mindspore/common/sparse_tensor.py @@ -558,10 +558,10 @@ class CSRTensor(CSRTensor_): Args: indptr (Tensor): 1-D Tensor of shape `[M]`, which equals to `shape[0] + 1`, which indicates the start and end point for `values` in each row. Default: None. If provided, - must be :class:`mindspore.int16`, :class:`mindspore.int32` or :class:`mindspore.int64`. + must be int16, int32 or int64. indices (Tensor): 1-D Tensor of shape `[N]`, which has the same length as `values`. `indices` indicates the which column `values` should be placed. Default: None. If provided, - must be :class:`mindspore.int16`, :class:`mindspore.int32` or :class:`mindspore.int64`. + must be int16, int32 or int64. values (Tensor): Tensor, which has the same length as `indices` (values.shape[0] == indices.shape[0]). `values` stores the data for CSRTensor. Default: None. shape (tuple(int)): A tuple indicates the shape of the CSRTensor, and `shape[0]` must equal to `M - 1`, diff --git a/mindspore/python/mindspore/ops/operations/array_ops.py b/mindspore/python/mindspore/ops/operations/array_ops.py index 7c04e321f9e..2be2c2f94e5 100755 --- a/mindspore/python/mindspore/ops/operations/array_ops.py +++ b/mindspore/python/mindspore/ops/operations/array_ops.py @@ -178,26 +178,7 @@ class Expand(Primitive): """ Returns a new view of the self tensor with singleton dimensions expanded to a larger size. - Note: - Passing -1 as the size for a dimension means not changing the size of that dimension. - Tensor can be also expanded to a larger number of dimensions, and the new ones will be appended at the front. - For the new dimensions, the size cannot be set to -1. - - Inputs: - - **x** (Tensor) - The shape of tensor is (x_1, x_2, ..., x_R). - - **shape** (Tensor) - The new shape of x. - - Outputs: - - **y** (Tensor) - Tensor after expansion. - - Raises: - TypeError: If any input is not Tensor. - TypeError: If the type of `shape` is not one of the following dtype: int16, int32, int64. - ValueError: If `shape` is not a 1-D tensor. - ValueError: If the size of `shape` is less than the size of `x.shape`. - ValueError: If the expanded `shape` is not equal to the existing shape of `x` at a dimension that is not 1. - ValueError: If the expanded size < 0 and it is in a leading, non-existing dimension. - ValueError: If the number of elements of output is more than 1000000. + Refer to :func:`mindspore.ops.expand` for more details. Supported Platforms: ``Ascend`` ``CPU`` @@ -560,11 +541,11 @@ class Col2Im(Primitive): Args: kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two positive int for height and width. If type is int, it means that height equal with width. Must be specified. - dilation (Union[int, tuple[int], list[int]]): The size of the dilation, should be two positive int + dilation (Union[int, tuple[int], list[int]], optional): The size of the dilation, should be two positive int for height and width. If type is int, it means that height equal with width. Default: 1. - padding (Union[int, tuple[int], list[int]]): The size of the padding, should be two int + padding (Union[int, tuple[int], list[int]], optional)): The size of the padding, should be two int for height and width. If type is int, it means that height equal with width. Default: 0. - stride (Union[int, tuple[int], list[int]]): The size of the stride, should be two positive int + stride (Union[int, tuple[int], list[int]], optional)): The size of the stride, should be two positive int for height and width. If type is int, it means that height equal with width. Default: 1. Inputs: @@ -3780,7 +3761,7 @@ class ResizeNearestNeighborV2(Primitive): tensors are aligned, preserving the values at the corner pixels. Defaults: False. half_pixel_centers (bool, optional): Whether half pixel center. If set to True, `align_corners` should be False. Default: False. - data_format (string, optional): An optional `string` that describes the + data_format (str, optional): An optional `string` that describes the format of the input `x`. Default: `NHWC`. Inputs: @@ -5707,7 +5688,7 @@ class Sort(Primitive): """ Sorts the elements of the input tensor along the given dimension in the specified order. - Refer to :func:'mindspore.ops.sort' for more details. + Refer to :func:`mindspore.ops.sort` for more details. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` diff --git a/mindspore/python/mindspore/ops/operations/image_ops.py b/mindspore/python/mindspore/ops/operations/image_ops.py index ec3462c43d5..e918d16dbc9 100644 --- a/mindspore/python/mindspore/ops/operations/image_ops.py +++ b/mindspore/python/mindspore/ops/operations/image_ops.py @@ -1077,10 +1077,11 @@ class CombinedNonMaxSuppression(Primitive): Greedily selects a subset of bounding boxes in descending order of score. Args: - clip_boxes (bool): If true, assume the box coordinates are between [0, 1] and clip the output boxes + clip_boxes (bool, optional): If true, assume the box coordinates are between [0, 1] and clip the output boxes if they fall beyond [0, 1]. If false, do not do clipping and output the box coordinates as it is. Defaults to true. - pad_per_class (bool): If false, the output nmsed boxes, scores and classes are padded/clipped to max_total_size. + pad_per_class (bool, optional): If false, the output nmsed boxes, + scores and classes are padded/clipped to max_total_size. If true, the output nmsed boxes, scores and classes are padded to be of length max_size_per_class * num_classes, unless it exceeds max_total_size in which case it is clipped to max_total_size. Defaults to false. diff --git a/mindspore/python/mindspore/ops/operations/math_ops.py b/mindspore/python/mindspore/ops/operations/math_ops.py index 741ec79a289..fd774d4d40a 100644 --- a/mindspore/python/mindspore/ops/operations/math_ops.py +++ b/mindspore/python/mindspore/ops/operations/math_ops.py @@ -2693,7 +2693,7 @@ class Histogram(Primitive): Elements lower than min and higher than max are ignored. Args: - bins (int, optional) : Number of histogram bins, optional. Default 100. If specified, must be positive. + bins (int, optional): Number of histogram bins, optional. Default 100. If specified, must be positive. min (float, optional): An optional float of the lower end of the range (inclusive). Default value is 0.0. max (float, optional): An optional float of the upper end of the range (inclusive). Default value is 0.0. @@ -5622,7 +5622,7 @@ class MatrixLogarithm(Primitive): Must be one of the following types:complex64, complex128. And shape must be 2D-7D. Outputs: - - **y** (Tensor), has the same shape and type as input. + - **y** (Tensor) - has the same shape and type as input. Raises: TypeError: If `x` is not a Tensor. @@ -5803,8 +5803,8 @@ class ComplexAbs(Primitive): - **x** (Tensor) - A Tensor, types: complex64, complex128. Outputs: - - **y** (Tensor) - Tensor, has the same shape as x. If the type of x is complex64, the type of y is float32. - If the type of x is complex128, the type of y is float64. + Tensor, has the same shape as x. If the type of x is complex64, the type of output is float32. + If the type of x is complex128, the type of output is float64. Raises: TypeError: If the input is not a Tensor. @@ -6593,17 +6593,17 @@ class RaggedRange(Primitive): """ Returns a `RaggedTensor` containing the specified sequences of numbers. - Args: + Args: Tsplits (mindspore.dtype): An mindspore.dtype from: mindspore.int32, mindspore.int64. - Inputs: + Inputs: - **starts** (Tensor) - The starts of each range, whose type is int32, int64, float32 or float64, and shape is 0D or 1D. - **limits** (Tensor) - The limits of each range, whose type and shape should be same as input `starts`. - **deltas** (Tensor) - The deltas of each range, whose type and shape should be same as input `starts`, and each element in the tensor should not be equal to 0. - Outputs: + Outputs: - **rt_nested_splits** (Tensor) - The nested splits of the return `RaggedTensor`, and type of the tensor is `Tsplits`, shape of the tensor is equal to shape of input `starts` plus 1. @@ -7547,7 +7547,7 @@ class Eig(Primitive): Computes the eigenvalues and eigenvectors of a square matrix(batch square matrices). Args: - compute_v (bool): If `True`, compute both eigenvalues and eigenvectors; + compute_v (bool, optional): If `True`, compute both eigenvalues and eigenvectors; If `False`, just eigenvalues will be computed. Default: False. Inputs: - **x** (Tensor) - Square matrices of shape :math:`(*, N, N)`, diff --git a/mindspore/python/mindspore/ops/operations/nn_ops.py b/mindspore/python/mindspore/ops/operations/nn_ops.py index 2c03c19c769..51ed68a651f 100644 --- a/mindspore/python/mindspore/ops/operations/nn_ops.py +++ b/mindspore/python/mindspore/ops/operations/nn_ops.py @@ -8270,7 +8270,7 @@ class Dilation2D(Primitive): each sampling location. Its value must be greater or equal to 1 and bounded by the height and width of the input `x`. - pad_mode (str): Specifies padding mode. The optional values are + pad_mode (str, optional): Specifies padding mode. The optional values are "same", "valid". Default: "same". Both upper and lower case are supported. - same: Adopts the way of completion. The height and width of the output will be the same as @@ -8278,7 +8278,7 @@ class Dilation2D(Primitive): - valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. - data_format (str): The value for data format, only 'NCHW' is supported at present. Default: "NCHW". + data_format (str, optional): The value for data format, only 'NCHW' is supported at present. Default: "NCHW". Inputs: - **x** (Tensor) - Input data. A four dimension tensor with float16 or float32 data type. The shape must be @@ -9146,13 +9146,12 @@ class FractionalMaxPool3DWithFixedKsize(Primitive): Supported shape :math:`(N, C, 3)` Outputs: - Outputs: - **y** (Tensor) - A tensor, the output of FractionalMaxPool3DWithFixedKsize. - Has the same data type with `x`. - Tensor of shape :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(N, D_{out}, H_{out}, W_{out}, C)`. + Has the same data type with `x`. + Tensor of shape :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(N, D_{out}, H_{out}, W_{out}, C)`. - **argmax** (Tensor) - A tensor, the indices along with the outputs. - Has the same shape as the `y` and int32 or int64 data type. + Has the same shape as the `y` and int32 or int64 data type. Raises: TypeError: If `input_x` is not a 4D or 5D tensor. @@ -9567,15 +9566,19 @@ class DeformableOffsets(Primitive): class GridSampler2D(Primitive): """ - This operation samples 2d input_x by using interpolation based on flow field grid, which is usually gennerated by + This operation samples 2d input_x by using interpolation based on flow field grid, + which is usually gennerated by affine_grid. Args: - interpolation_mode (str): An optional string specifying the interpolation method. The optional values are + interpolation_mode (str, optional): An optional string specifying the interpolation method. + The optional values are "bilinear" or "nearest". Default: "bilinear". - padding_mode (str): An optional string specifying the pad method. The optional values are "zeros", "border" or + padding_mode (str, optional): An optional string specifying the pad method. + The optional values are "zeros", "border" or "reflection". Default: "zeros". - align_corners (bool): An optional bool. When set to True, the centers of the corner pixels of the input + align_corners (bool, optional): An optional bool. When set to True, + the centers of the corner pixels of the input and output tensors are aligned. When set to False, it is not aligned. Defaults to False. Inputs: diff --git a/mindspore/python/mindspore/ops/operations/random_ops.py b/mindspore/python/mindspore/ops/operations/random_ops.py index f03097c2355..62188d13d7a 100755 --- a/mindspore/python/mindspore/ops/operations/random_ops.py +++ b/mindspore/python/mindspore/ops/operations/random_ops.py @@ -90,7 +90,7 @@ class TruncatedNormal(Primitive): dtype (mindspore.dtype): Specified output data type. Must be one of the following types: mindspore.float16, mindspore.float32 and mindspore.float64. Default: mindspore.float32. - Inputs + Inputs: - **shape** (Tensor) - The shape of random tensor to be generated. Its type must be one of the following types: mindspore.int32 and mindspore.int64.