!45871 modify the format of files 1122
Merge pull request !45871 from 宦晓玲/code_docs_1122
This commit is contained in:
commit
2e182dabd8
|
@ -3,4 +3,4 @@ mindspore.Tensor.i0
|
|||
|
||||
.. py:method:: mindspore.Tensor.i0()
|
||||
|
||||
:func:`mindspore.Tensor.bessel_i0` 的别名。
|
||||
详情请参考 :func:`mindspore.ops.i0`。
|
||||
|
|
|
@ -20,7 +20,7 @@ mindspore.CSRTensor
|
|||
如果 `indptr` 或 `indices` 的值不合法,行为将没有定义。不合法的值包括当 `values` 或 `indices` 的长度超出了 `indptr` 所指定的取值范围,以及当 `indices` 在同一行中出现重复的列。
|
||||
|
||||
参数:
|
||||
- **indptr** (Tensor) - shape为 :math:`(M)` 的一维整数Tensor,其中M等于 `shape[0] + 1` , 表示每行非零元素的在 `values` 中存储的起止位置。默认值:None。支持的数据类型为int16,int32和int64。
|
||||
- **indptr** (Tensor) - shape为 :math:`(M)` 的一维整数Tensor,其中M等于 `shape[0] + 1` ,表示每行非零元素的在 `values` 中存储的起止位置。默认值:None。支持的数据类型为int16,int32和int64。
|
||||
- **indices** (Tensor) - shape为 :math:`(N)` 的一维整数Tensor,其中N等于非零元素数量,表示每个元素的列索引值。默认值:None。支持的数据类型为int16, int32和int64。
|
||||
- **values** (Tensor) - Tensor,values的0维长度必须与indices的0维长度相等(values.shape[0] == indices.shape[0])。values用来表示索引对应的数值。默认值:None。
|
||||
- **shape** (tuple(int)) - shape为ndims的整数元组,用来指定稀疏矩阵的稠密shape。`shape[0]` 表示行数,因此必须和 `M - 1` 值相等。默认值:None。
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
- **x** (Tensor) - 复数Tensor,格式须为complex64或complex128。
|
||||
|
||||
输出:
|
||||
Tensor。如果 `x` 的类型是complex64,则 `y` 的类型是float32;如果 `x` 的类型是complex128,则 `y` 的类型是float64。
|
||||
Tensor。如果 `x` 的类型是complex64,则输出的类型是float32;如果 `x` 的类型是complex128,则输出的类型是float64。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 输入 `x` 不是Tensor。
|
||||
|
|
|
@ -11,12 +11,12 @@
|
|||
.. warning::
|
||||
此算子为实验性算子,将来可能面临更改或删除。
|
||||
|
||||
输入:
|
||||
输入:
|
||||
- **x** (Tensor) - 输入Tensor。数据类型为 `float16` 、 `float32` 或者 `float64` 。
|
||||
|
||||
输出:
|
||||
输出:
|
||||
Tensor, 和输入 `x` 具有相同的数据类型。
|
||||
|
||||
异常:
|
||||
异常:
|
||||
- **TypeError** - 如果输入 `x` 不是Tensor。
|
||||
- **TypeError** - 输入输入 `x` 的数据类型不是 `float16` 、 `float32` 或者 `float64` 。
|
||||
|
|
|
@ -8,11 +8,11 @@
|
|||
参数:
|
||||
- **compute_v** (bool,可选) - 如果为True,同时计算特征值和特征向量,如果为False,只计算特征值,默认值:False。
|
||||
|
||||
输入:
|
||||
输入:
|
||||
- **x** (Tensor) - 方阵。shape为 :math:`(*, N, N)`,数据类型支持
|
||||
float32、float64、complex64、complex128。
|
||||
|
||||
输出:
|
||||
输出:
|
||||
- **eigen_values** (Tensor) - shape为 :math:`(*, N)`,其中的每个向量代表对应矩阵的特征值,特征值之间没有顺序关系。
|
||||
- **eigen_vectors** (Tensor) - 如果 `compute_v` 为False,此为空Tensor,否则,为shape :math:`(*, N, N)` 的Tensor。
|
||||
其列表示相应特征值的规范化(单位长度)特征向量。
|
||||
|
|
|
@ -12,10 +12,10 @@ mindspore.ops.FractionalMaxPoolWithFixedKsize
|
|||
详细内容请参考论文 `Fractional Max-Pooling <https://arxiv.org/pdf/1412.6071>`_ 。
|
||||
|
||||
参数:
|
||||
- **ksize** (Union[float, tuple]) - 用于取最大值的内核窗口的大小。目标 ksize 为 `H x W` 。ksize 可以是元组,也可以是 `K x K` 的单个K。
|
||||
- **ksize** (Union[int, tuple[int]]) - 用于取最大值的内核窗口的大小。目标 ksize 为 `H x W` 。ksize 可以是元组,也可以是 `K x K` 的单个K。
|
||||
指明了输入Tensor的窗口大小 `(H, W)` 。
|
||||
|
||||
- **output_shape** (Union[int, tuple]) - 目标输出shape为 `H x W` ,输出shape可以是一个元组,或者 `H x H` 的单个H。
|
||||
- **output_shape** (Union[int, tuple[int]]) - 目标输出shape为 `H x W` ,输出shape可以是一个元组,或者 `H x H` 的单个H。
|
||||
指明了输出tensor的大小 `(H, W)` 。
|
||||
|
||||
- **data_format** (str,可选) - 可选的数据格式值,当前支持 `NCHW` ,默认为 `NCHW` 。
|
||||
|
|
|
@ -14,6 +14,6 @@ mindspore.ops.MatrixLogarithm
|
|||
|
||||
异常:
|
||||
- **TypeError** - 如果 `x` 不是Tensor。
|
||||
- **ValueError** - 如果 `x` 的数据类型不是complex64或complex128。
|
||||
- **TypeError** - 如果 `x` 的数据类型不是complex64或complex128。
|
||||
- **ValueError** - 如果 `x` 的维度小于2。
|
||||
- **ValueError** - 如果内部的两维不相等。
|
||||
|
|
|
@ -31,7 +31,7 @@ mindspore.ops.MaxUnpool2D
|
|||
- 如果 `pads` 是一个整数,则高度和宽度方向的填充数量相同,都等于 `pads` 。
|
||||
- 如果 `pads` 是含两个整数的元组,高度和宽度方向的填充数量分别等于 `pads[0]` 和 `pads[1]` 。
|
||||
|
||||
- **output_shape** (tuple[int],可选) 一个可选的输入,指定目标输出的尺寸。默认值:()。
|
||||
- **output_shape** (tuple[int],可选) - 一个可选的输入,指定目标输出的尺寸。默认值:()。
|
||||
|
||||
- 如果 `output_shape == ()` ,则输出的shape由 `kszie` 、 `strides` 和 `pads` 计算得到。
|
||||
- 如果 :math:`output_shape != ()` ,则 `output_shape` 必须为 :math:`(N, C, H, W)` 或 :math:`(N, H, W, C)` ,
|
||||
|
|
|
@ -27,12 +27,12 @@ mindspore.ops.ScaleAndTranslate
|
|||
- **TypeError** - `antialias` bool类型。
|
||||
- **TypeError** - `images` 数据类型无效。
|
||||
- **TypeError** - `size` 不是int32类型。
|
||||
- **TypeError** - `scale` 不是float32类型、。
|
||||
- **TypeError** - `scale` 不是float32类型。
|
||||
- **TypeError** - `translation` 不是Tensor或者数据类型不是float32。
|
||||
- **ValueError** - `kernel_type` 不在列表里面:["lanczos1", "lanczos3", "lanczos5", "gaussian", "box", "triangle",
|
||||
"keyscubic", "mitchellcubic"]。
|
||||
- **ValueError** - `images` 的秩不等于4。
|
||||
- **ValueError** - `size` 的shape不是 :math:`(2,)` 。
|
||||
- **ValueError** - `scale` 的shape不是 :math:`(2,)`
|
||||
- **ValueError** - `translation` 的shape不是 :math:`(2,)`
|
||||
- **ValueError** - `scale` 的shape不是 :math:`(2,)` 。
|
||||
- **ValueError** - `translation` 的shape不是 :math:`(2,)` 。
|
||||
|
||||
|
|
|
@ -10,13 +10,13 @@ mindspore.ops.pad
|
|||
- **padding** (Union[tuple[int], list[int], Tensor]) - pad的填充位置。
|
||||
:math:`\left\lfloor\frac{\text{len(padding)}}{2}\right\rfloor` 维度的 `input_x` 将会被填充。
|
||||
|
||||
- 示例:若只需要填充输入tensor的最后一个维度,则 `padding` 则的填充方式为:math:`(\text{padding\_left}, \text{padding\_right})`;
|
||||
- 示例:若只需要填充输入tensor的最后两个维度,则 `padding` 则的填充方式为:math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom})`;
|
||||
- 示例:若只需要填充输入tensor的最后三个维度,则 `padding` 则的填充方式为:math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom}, \text{padding\_front}, \text{padding\_back}))`;
|
||||
- 示例:若只需要填充输入tensor的最后一个维度,则 `padding` 则的填充方式为 :math:`(\text{padding\_left}, \text{padding\_right})`;
|
||||
- 示例:若只需要填充输入tensor的最后两个维度,则 `padding` 则的填充方式为 :math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom})`;
|
||||
- 示例:若只需要填充输入tensor的最后三个维度,则 `padding` 则的填充方式为 :math:`(\text{padding\_left}, \text{padding\_right}, \text{padding\_top}, \text{padding\_bottom}, \text{padding\_front}, \text{padding\_back}))`;
|
||||
|
||||
以此类推。
|
||||
|
||||
- **mode** (str,可选) - Pad的填充模式,可选择 "constant", "reflect" 或者 "replicate"。 默认值: "constant"。
|
||||
- **mode** (str,可选) - Pad的填充模式,可选择 "constant", "reflect" 或者 "replicate"。默认值:"constant"。
|
||||
|
||||
- 对于 "constant" 模式,请参考 :class:`mindspore.nn.ConstantPad1d` 作为示例来理解这个填充模式,并将这个模式扩展到n维。
|
||||
- 对于 "reflect" 模式,请参考 :class:`mindspore.nn.ReflectionPad1d` 作为示例来理解这个填充模式,并将这个模式扩展到n维。
|
||||
|
|
|
@ -558,10 +558,10 @@ class CSRTensor(CSRTensor_):
|
|||
Args:
|
||||
indptr (Tensor): 1-D Tensor of shape `[M]`, which equals to `shape[0] + 1`, which indicates the
|
||||
start and end point for `values` in each row. Default: None. If provided,
|
||||
must be :class:`mindspore.int16`, :class:`mindspore.int32` or :class:`mindspore.int64`.
|
||||
must be int16, int32 or int64.
|
||||
indices (Tensor): 1-D Tensor of shape `[N]`, which has the same length as `values`. `indices`
|
||||
indicates the which column `values` should be placed. Default: None. If provided,
|
||||
must be :class:`mindspore.int16`, :class:`mindspore.int32` or :class:`mindspore.int64`.
|
||||
must be int16, int32 or int64.
|
||||
values (Tensor): Tensor, which has the same length as `indices` (values.shape[0] == indices.shape[0]).
|
||||
`values` stores the data for CSRTensor. Default: None.
|
||||
shape (tuple(int)): A tuple indicates the shape of the CSRTensor, and `shape[0]` must equal to `M - 1`,
|
||||
|
|
|
@ -178,26 +178,7 @@ class Expand(Primitive):
|
|||
"""
|
||||
Returns a new view of the self tensor with singleton dimensions expanded to a larger size.
|
||||
|
||||
Note:
|
||||
Passing -1 as the size for a dimension means not changing the size of that dimension.
|
||||
Tensor can be also expanded to a larger number of dimensions, and the new ones will be appended at the front.
|
||||
For the new dimensions, the size cannot be set to -1.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The shape of tensor is (x_1, x_2, ..., x_R).
|
||||
- **shape** (Tensor) - The new shape of x.
|
||||
|
||||
Outputs:
|
||||
- **y** (Tensor) - Tensor after expansion.
|
||||
|
||||
Raises:
|
||||
TypeError: If any input is not Tensor.
|
||||
TypeError: If the type of `shape` is not one of the following dtype: int16, int32, int64.
|
||||
ValueError: If `shape` is not a 1-D tensor.
|
||||
ValueError: If the size of `shape` is less than the size of `x.shape`.
|
||||
ValueError: If the expanded `shape` is not equal to the existing shape of `x` at a dimension that is not 1.
|
||||
ValueError: If the expanded size < 0 and it is in a leading, non-existing dimension.
|
||||
ValueError: If the number of elements of output is more than 1000000.
|
||||
Refer to :func:`mindspore.ops.expand` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
@ -560,11 +541,11 @@ class Col2Im(Primitive):
|
|||
Args:
|
||||
kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two positive int
|
||||
for height and width. If type is int, it means that height equal with width. Must be specified.
|
||||
dilation (Union[int, tuple[int], list[int]]): The size of the dilation, should be two positive int
|
||||
dilation (Union[int, tuple[int], list[int]], optional): The size of the dilation, should be two positive int
|
||||
for height and width. If type is int, it means that height equal with width. Default: 1.
|
||||
padding (Union[int, tuple[int], list[int]]): The size of the padding, should be two int
|
||||
padding (Union[int, tuple[int], list[int]], optional)): The size of the padding, should be two int
|
||||
for height and width. If type is int, it means that height equal with width. Default: 0.
|
||||
stride (Union[int, tuple[int], list[int]]): The size of the stride, should be two positive int
|
||||
stride (Union[int, tuple[int], list[int]], optional)): The size of the stride, should be two positive int
|
||||
for height and width. If type is int, it means that height equal with width. Default: 1.
|
||||
|
||||
Inputs:
|
||||
|
@ -3780,7 +3761,7 @@ class ResizeNearestNeighborV2(Primitive):
|
|||
tensors are aligned, preserving the values at the corner pixels. Defaults: False.
|
||||
half_pixel_centers (bool, optional): Whether half pixel center. If set to True,
|
||||
`align_corners` should be False. Default: False.
|
||||
data_format (string, optional): An optional `string` that describes the
|
||||
data_format (str, optional): An optional `string` that describes the
|
||||
format of the input `x`. Default: `NHWC`.
|
||||
|
||||
Inputs:
|
||||
|
@ -5707,7 +5688,7 @@ class Sort(Primitive):
|
|||
"""
|
||||
Sorts the elements of the input tensor along the given dimension in the specified order.
|
||||
|
||||
Refer to :func:'mindspore.ops.sort' for more details.
|
||||
Refer to :func:`mindspore.ops.sort` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
|
@ -1077,10 +1077,11 @@ class CombinedNonMaxSuppression(Primitive):
|
|||
Greedily selects a subset of bounding boxes in descending order of score.
|
||||
|
||||
Args:
|
||||
clip_boxes (bool): If true, assume the box coordinates are between [0, 1] and clip the output boxes
|
||||
clip_boxes (bool, optional): If true, assume the box coordinates are between [0, 1] and clip the output boxes
|
||||
if they fall beyond [0, 1]. If false, do not do clipping and output the box coordinates as it is.
|
||||
Defaults to true.
|
||||
pad_per_class (bool): If false, the output nmsed boxes, scores and classes are padded/clipped to max_total_size.
|
||||
pad_per_class (bool, optional): If false, the output nmsed boxes,
|
||||
scores and classes are padded/clipped to max_total_size.
|
||||
If true, the output nmsed boxes, scores and classes are padded to be of length
|
||||
max_size_per_class * num_classes, unless it exceeds max_total_size in which case it is clipped to
|
||||
max_total_size. Defaults to false.
|
||||
|
|
|
@ -2693,7 +2693,7 @@ class Histogram(Primitive):
|
|||
Elements lower than min and higher than max are ignored.
|
||||
|
||||
Args:
|
||||
bins (int, optional) : Number of histogram bins, optional. Default 100. If specified, must be positive.
|
||||
bins (int, optional): Number of histogram bins, optional. Default 100. If specified, must be positive.
|
||||
min (float, optional): An optional float of the lower end of the range (inclusive). Default value is 0.0.
|
||||
max (float, optional): An optional float of the upper end of the range (inclusive). Default value is 0.0.
|
||||
|
||||
|
@ -5622,7 +5622,7 @@ class MatrixLogarithm(Primitive):
|
|||
Must be one of the following types:complex64, complex128. And shape must be 2D-7D.
|
||||
|
||||
Outputs:
|
||||
- **y** (Tensor), has the same shape and type as input.
|
||||
- **y** (Tensor) - has the same shape and type as input.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x` is not a Tensor.
|
||||
|
@ -5803,8 +5803,8 @@ class ComplexAbs(Primitive):
|
|||
- **x** (Tensor) - A Tensor, types: complex64, complex128.
|
||||
|
||||
Outputs:
|
||||
- **y** (Tensor) - Tensor, has the same shape as x. If the type of x is complex64, the type of y is float32.
|
||||
If the type of x is complex128, the type of y is float64.
|
||||
Tensor, has the same shape as x. If the type of x is complex64, the type of output is float32.
|
||||
If the type of x is complex128, the type of output is float64.
|
||||
|
||||
Raises:
|
||||
TypeError: If the input is not a Tensor.
|
||||
|
@ -6593,17 +6593,17 @@ class RaggedRange(Primitive):
|
|||
"""
|
||||
Returns a `RaggedTensor` containing the specified sequences of numbers.
|
||||
|
||||
Args:
|
||||
Args:
|
||||
Tsplits (mindspore.dtype): An mindspore.dtype from: mindspore.int32, mindspore.int64.
|
||||
|
||||
Inputs:
|
||||
Inputs:
|
||||
- **starts** (Tensor) - The starts of each range, whose type is int32, int64, float32 or float64,
|
||||
and shape is 0D or 1D.
|
||||
- **limits** (Tensor) - The limits of each range, whose type and shape should be same as input `starts`.
|
||||
- **deltas** (Tensor) - The deltas of each range, whose type and shape should be same as input `starts`,
|
||||
and each element in the tensor should not be equal to 0.
|
||||
|
||||
Outputs:
|
||||
Outputs:
|
||||
- **rt_nested_splits** (Tensor) - The nested splits of the return `RaggedTensor`,
|
||||
and type of the tensor is `Tsplits`,
|
||||
shape of the tensor is equal to shape of input `starts` plus 1.
|
||||
|
@ -7547,7 +7547,7 @@ class Eig(Primitive):
|
|||
Computes the eigenvalues and eigenvectors of a square matrix(batch square matrices).
|
||||
|
||||
Args:
|
||||
compute_v (bool): If `True`, compute both eigenvalues and eigenvectors;
|
||||
compute_v (bool, optional): If `True`, compute both eigenvalues and eigenvectors;
|
||||
If `False`, just eigenvalues will be computed. Default: False.
|
||||
Inputs:
|
||||
- **x** (Tensor) - Square matrices of shape :math:`(*, N, N)`,
|
||||
|
|
|
@ -8270,7 +8270,7 @@ class Dilation2D(Primitive):
|
|||
each sampling location. Its value must be greater or equal to 1 and bounded by
|
||||
the height and width of the input `x`.
|
||||
|
||||
pad_mode (str): Specifies padding mode. The optional values are
|
||||
pad_mode (str, optional): Specifies padding mode. The optional values are
|
||||
"same", "valid". Default: "same". Both upper and lower case are supported.
|
||||
|
||||
- same: Adopts the way of completion. The height and width of the output will be the same as
|
||||
|
@ -8278,7 +8278,7 @@ class Dilation2D(Primitive):
|
|||
|
||||
- valid: Adopts the way of discarding. The possible largest height and width of output will be returned
|
||||
without padding. Extra pixels will be discarded.
|
||||
data_format (str): The value for data format, only 'NCHW' is supported at present. Default: "NCHW".
|
||||
data_format (str, optional): The value for data format, only 'NCHW' is supported at present. Default: "NCHW".
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - Input data. A four dimension tensor with float16 or float32 data type. The shape must be
|
||||
|
@ -9146,13 +9146,12 @@ class FractionalMaxPool3DWithFixedKsize(Primitive):
|
|||
Supported shape :math:`(N, C, 3)`
|
||||
|
||||
Outputs:
|
||||
Outputs:
|
||||
- **y** (Tensor) - A tensor, the output of FractionalMaxPool3DWithFixedKsize.
|
||||
Has the same data type with `x`.
|
||||
Tensor of shape :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(N, D_{out}, H_{out}, W_{out}, C)`.
|
||||
Has the same data type with `x`.
|
||||
Tensor of shape :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(N, D_{out}, H_{out}, W_{out}, C)`.
|
||||
|
||||
- **argmax** (Tensor) - A tensor, the indices along with the outputs.
|
||||
Has the same shape as the `y` and int32 or int64 data type.
|
||||
Has the same shape as the `y` and int32 or int64 data type.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` is not a 4D or 5D tensor.
|
||||
|
@ -9567,15 +9566,19 @@ class DeformableOffsets(Primitive):
|
|||
|
||||
class GridSampler2D(Primitive):
|
||||
"""
|
||||
This operation samples 2d input_x by using interpolation based on flow field grid, which is usually gennerated by
|
||||
This operation samples 2d input_x by using interpolation based on flow field grid,
|
||||
which is usually gennerated by
|
||||
affine_grid.
|
||||
|
||||
Args:
|
||||
interpolation_mode (str): An optional string specifying the interpolation method. The optional values are
|
||||
interpolation_mode (str, optional): An optional string specifying the interpolation method.
|
||||
The optional values are
|
||||
"bilinear" or "nearest". Default: "bilinear".
|
||||
padding_mode (str): An optional string specifying the pad method. The optional values are "zeros", "border" or
|
||||
padding_mode (str, optional): An optional string specifying the pad method.
|
||||
The optional values are "zeros", "border" or
|
||||
"reflection". Default: "zeros".
|
||||
align_corners (bool): An optional bool. When set to True, the centers of the corner pixels of the input
|
||||
align_corners (bool, optional): An optional bool. When set to True,
|
||||
the centers of the corner pixels of the input
|
||||
and output tensors are aligned. When set to False, it is not aligned. Defaults to False.
|
||||
|
||||
Inputs:
|
||||
|
|
|
@ -90,7 +90,7 @@ class TruncatedNormal(Primitive):
|
|||
dtype (mindspore.dtype): Specified output data type. Must be one of the following types:
|
||||
mindspore.float16, mindspore.float32 and mindspore.float64. Default: mindspore.float32.
|
||||
|
||||
Inputs
|
||||
Inputs:
|
||||
- **shape** (Tensor) - The shape of random tensor to be generated. Its type must be one of the following types:
|
||||
mindspore.int32 and mindspore.int64.
|
||||
|
||||
|
|
Loading…
Reference in New Issue