add doc desc for mul primitive
This commit is contained in:
parent
7099307702
commit
2cab180e3a
|
@ -199,6 +199,7 @@ mindspore.Tensor
|
|||
mindspore.Tensor.moveaxis
|
||||
mindspore.Tensor.msort
|
||||
mindspore.Tensor.mT
|
||||
mindspore.Tensor.mul
|
||||
mindspore.Tensor.multiply
|
||||
mindspore.Tensor.nan_to_num
|
||||
mindspore.Tensor.nansum
|
||||
|
|
|
@ -205,6 +205,7 @@
|
|||
mindspore.Tensor.moveaxis
|
||||
mindspore.Tensor.msort
|
||||
mindspore.Tensor.mT
|
||||
mindspore.Tensor.mul
|
||||
mindspore.Tensor.multiply
|
||||
mindspore.Tensor.nan_to_num
|
||||
mindspore.Tensor.nansum
|
||||
|
|
|
@ -4037,39 +4037,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def mul(self, value):
|
||||
r"""
|
||||
Multiplies two tensors element-wise.
|
||||
|
||||
.. note::
|
||||
- Inputs of input tensor and `value` comply with the implicit type conversion rules to make
|
||||
the data types consistent.
|
||||
- The inputs must be two tensors or one tensor and one scalar.
|
||||
- When the inputs are two tensors,
|
||||
dtypes of them cannot be bool at the same time, and the shapes of them can be broadcast.
|
||||
- When the inputs are one tensor and one scalar, the scalar could only be a constant.
|
||||
|
||||
Args:
|
||||
value (Union[Tensor, number.Number, bool]): The second input, when the first input is a Tensor,
|
||||
the second input should be a number.Number or bool value, or a Tensor whose data type is number
|
||||
or bool\_. When the first input is Scalar, the second input must be a Tensor whose data type is
|
||||
number or bool\_.
|
||||
|
||||
Returns:
|
||||
Tensor, the shape is the same as the one after broadcasting,
|
||||
and the data type is the one with higher precision or higher digits among the two inputs.
|
||||
|
||||
Raises:
|
||||
TypeError: If input tensor and `value` is not one of the following: Tensor, number.Number, bool.
|
||||
ValueError: If input tensor and `value` are not the same shape.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32)
|
||||
>>> output = x.mul(y)
|
||||
>>> print(output)
|
||||
[ 4. 10. 18.]
|
||||
For details, please refer to :func:`mindspore.ops.mul`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('mul')(self, value)
|
||||
|
|
|
@ -133,6 +133,18 @@ def vm_impl_mul(self):
|
|||
return vm_impl
|
||||
|
||||
|
||||
@vm_impl_getters.register(P.Conj)
|
||||
def vm_impl_conj(self):
|
||||
"""Generate vm_impl function for Conj."""
|
||||
|
||||
def vm_impl(x):
|
||||
x = x.asnumpy()
|
||||
t = np.conj(x)
|
||||
return Tensor(t)
|
||||
|
||||
return vm_impl
|
||||
|
||||
|
||||
@vm_impl_getters.register(P.Square)
|
||||
def vm_impl_square(self):
|
||||
"""Generate vm_impl function for Square."""
|
||||
|
|
Loading…
Reference in New Issue