!20644 fix format issue

Merge pull request !20644 from zhujingxuan/format
This commit is contained in:
i-robot 2021-07-22 07:47:26 +00:00 committed by Gitee
commit 2ae65ae387
30 changed files with 30 additions and 68 deletions

View File

@ -256,5 +256,4 @@ void CoderGraph::DumpUnSupportLayer(Target target) {
}
});
}
} // namespace mindspore::lite::micro

View File

@ -23,7 +23,6 @@
using mindspore::schema::PrimitiveType_Cast;
namespace mindspore::lite::micro {
int DTypeCastCoder::Prepare(CoderContext *const context) {
data_num_ = input_tensor_->ElementsNum();
if (data_num_ == 0) {

View File

@ -43,7 +43,7 @@ int ReduceBaseCoder::CheckParameters() {
}
for (auto i = 0; i < num_axes_; i++) {
if (axes_[i] < -static_cast<int>(input_rank) || axes_[i] >= static_cast<int>(input_rank)) {
if ((axes_[i] < -static_cast<int>(input_rank)) || (axes_[i] >= static_cast<int>(input_rank))) {
MS_LOG(ERROR) << "Reduce got invalid axis " << axes_[i] << ", axis should be in ["
<< -static_cast<int>(input_rank) << ", " << input_rank - 1 << "].";
return RET_ERROR;

View File

@ -28,7 +28,6 @@ using mindspore::schema::PrimitiveType_Squeeze;
using mindspore::schema::PrimitiveType_Unsqueeze;
namespace mindspore::lite::micro {
int ReshapeBaseCoder::Prepare(CoderContext *const context) { return RET_OK; }
int ReshapeBaseCoder::DoCode(CoderContext *const context) {
@ -51,5 +50,4 @@ REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Squeeze, CPUOp
REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt32, PrimitiveType_Squeeze, CPUOpCoderCreator<ReshapeBaseCoder>)
REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Unsqueeze, CPUOpCoderCreator<ReshapeBaseCoder>)
REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt32, PrimitiveType_Unsqueeze, CPUOpCoderCreator<ReshapeBaseCoder>)
} // namespace mindspore::lite::micro

View File

@ -18,7 +18,6 @@
#include <type_traits>
namespace mindspore::lite::micro {
int SoftmaxBaseCoder::Init() {
this->softmax_param_ = reinterpret_cast<SoftmaxParameter *>(parameter_);
std::vector<int> in_shape = input_tensor_->shape();
@ -52,5 +51,4 @@ int SoftmaxBaseCoder::ReSize() {
softmax_param_->element_size_ = ele_size;
return RET_OK;
}
} // namespace mindspore::lite::micro

View File

@ -26,7 +26,6 @@
using mindspore::schema::PrimitiveType_AddFusion;
namespace mindspore::lite::micro::cmsis {
int AddInt8Coder::Prepare(CoderContext *const context) {
input1_ = input_tensors_.at(0);
input2 = input_tensors_.at(1);
@ -51,13 +50,13 @@ int AddInt8Coder::Prepare(CoderContext *const context) {
const double real_output_multiplier =
twice_max_input_scale / ((1 << static_cast<size_t>(left_shift_)) * static_cast<double>(output_scale));
MS_CHECK_TRUE(0 <= real_input1_multiplier && real_input1_multiplier <= 1,
MS_CHECK_TRUE((real_input1_multiplier >= 0) && (real_input1_multiplier <= 1),
"real_input1_multiplier should be in (0, 1)");
QuantizeMultiplier(real_input1_multiplier, &input_1_mult_, &input_1_shift_);
MS_CHECK_TRUE(0 <= real_input2_multiplier && real_input2_multiplier <= 1,
MS_CHECK_TRUE((real_input2_multiplier >= 0) && (real_input2_multiplier <= 1),
"real_input2_multiplier should be in (0, 1)");
QuantizeMultiplier(real_input2_multiplier, &input_2_mult_, &input_2_shift_);
MS_CHECK_TRUE(0 <= real_output_multiplier && real_output_multiplier <= 1,
MS_CHECK_TRUE((real_output_multiplier >= 0) && (real_output_multiplier <= 1),
"real_output_multiplier should be in (0, 1)");
QuantizeMultiplier(real_output_multiplier, &out_mult_, &out_shift_);

View File

@ -18,7 +18,6 @@
#include "nnacl/int8/quantize.h"
namespace mindspore::lite::micro::cmsis {
int Conv2DBaseCoder::SetQuantArgs() {
int channel = output_tensor_->Channel();
size_t channel_data_size = static_cast<size_t>(channel) * sizeof(int32_t);
@ -56,5 +55,4 @@ int Conv2DBaseCoder::SetQuantArgs() {
return RET_OK;
}
} // namespace mindspore::lite::micro::cmsis

View File

@ -25,7 +25,6 @@
using mindspore::schema::PrimitiveType_Conv2DFusion;
namespace mindspore::lite::micro::cmsis {
int Conv2DInt8Coder::Prepare(CoderContext *const context) {
Conv2DBaseCoder::Init();
MS_CHECK_RET_CODE(micro::Conv2DBaseCoder::CheckLayout(input_tensor_), "CheckLayout failed");
@ -97,9 +96,9 @@ int Conv2DInt8Coder::DoCode(CoderContext *const context) {
}
int Conv2DInt8Coder::SetParameters() {
MS_CHECK_TRUE(input_tensor_->Channel() == filter_tensor_->DimensionSize(3),
MS_CHECK_TRUE(input_tensor_->Channel() == filter_tensor_->DimensionSize(kNHWC_C),
"input Channel and filter size not match!");
MS_CHECK_TRUE(output_tensor_->Channel() == filter_tensor_->DimensionSize(0),
MS_CHECK_TRUE(output_tensor_->Channel() == filter_tensor_->DimensionSize(kNHWC_N),
"output Channel and filter size not match!");
input_x_ = input_tensor_->Width();
@ -107,8 +106,8 @@ int Conv2DInt8Coder::SetParameters() {
input_ch_ = input_tensor_->Channel();
input_batches_ = input_tensor_->Batch();
kernel_x_ = filter_tensor_->DimensionSize(2);
kernel_y_ = filter_tensor_->DimensionSize(1);
kernel_x_ = filter_tensor_->DimensionSize(kNHWC_W);
kernel_y_ = filter_tensor_->DimensionSize(kNHWC_H);
pad_x_ = conv_param_->pad_l_;
pad_y_ = conv_param_->pad_u_;
@ -123,8 +122,8 @@ int Conv2DInt8Coder::SetParameters() {
input_offset_ = -input_quant_arg.zeroPoint;
out_offset_ = output_quant_arg.zeroPoint;
output_x_ = output_tensor_->DimensionSize(2);
output_y_ = output_tensor_->DimensionSize(1);
output_x_ = output_tensor_->DimensionSize(kNHWC_W);
output_y_ = output_tensor_->DimensionSize(kNHWC_H);
output_ch_ = output_tensor_->Channel();
CalculateActivationRangeQuantized(conv_param_->act_type_ == ActType_Relu, conv_param_->act_type_ == ActType_Relu6,

View File

@ -21,7 +21,6 @@
#include "coder/log.h"
namespace mindspore::lite::micro::cmsis {
int DWConvInt8Coder::Prepare(CoderContext *const context) {
Conv2DBaseCoder::Init();
MS_CHECK_RET_CODE(micro::Conv2DBaseCoder::CheckLayout(input_tensor_), "Check layout failed.");
@ -157,5 +156,4 @@ int DWConvInt8Coder::InitTmpBuffer() {
}
return 0;
}
} // namespace mindspore::lite::micro::cmsis

View File

@ -21,7 +21,6 @@
using mindspore::schema::PrimitiveType_FullConnection;
namespace mindspore::lite::micro::cmsis {
int FullConnectionInt8Coder::Prepare(CoderContext *const context) {
FullConnectionBaseCoder::Init();
ConfigInputOutput();

View File

@ -23,7 +23,6 @@
using mindspore::schema::PrimitiveType_MulFusion;
namespace mindspore::lite::micro::cmsis {
int MulInt8Coder::Prepare(CoderContext *const context) {
input1_ = OperatorCoder::input_tensors().at(0);
input2_ = OperatorCoder::input_tensors().at(1);

View File

@ -105,5 +105,4 @@ int PoolingInt8Coder::SetParameters() {
REG_OPERATOR_CODER(kARM32M, kNumberTypeInt8, PrimitiveType_AvgPoolFusion, CPUOpCoderCreator<PoolingInt8Coder>)
REG_OPERATOR_CODER(kARM32M, kNumberTypeInt8, PrimitiveType_MaxPoolFusion, CPUOpCoderCreator<PoolingInt8Coder>)
} // namespace mindspore::lite::micro::cmsis

View File

@ -22,7 +22,6 @@
using mindspore::schema::PrimitiveType_Reshape;
namespace mindspore::lite::micro::cmsis {
int ReshapeInt8Coder::DoCode(CoderContext *const context) {
int elements_num = input_tensor_->ElementsNum();
@ -47,5 +46,4 @@ int ReshapeInt8Coder::DoCode(CoderContext *const context) {
}
REG_OPERATOR_CODER(kARM32M, kNumberTypeInt8, PrimitiveType_Reshape, CPUOpCoderCreator<ReshapeInt8Coder>)
} // namespace mindspore::lite::micro::cmsis

View File

@ -115,5 +115,4 @@ int ReduceFP32Coder::DoCode(CoderContext *const context) {
}
REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_ReduceFusion, CPUOpCoderCreator<ReduceFP32Coder>)
} // namespace mindspore::lite::micro::nnacl

View File

@ -28,7 +28,6 @@ using mindspore::schema::CoordinateTransformMode_HALF_PIXEL;
using mindspore::schema::PrimitiveType_Resize;
namespace mindspore::lite::micro::nnacl {
int ResizeFP32Coder::Prepare(CoderContext *const context) {
MS_CHECK_RET_CODE(ResizeBaseCoder::Init(), "ResizeBaseCoder::Init failed");
MS_CHECK_RET_CODE(SelectCalculatorFunc(), "SelectCalculatorFunc failed");
@ -63,8 +62,8 @@ int ResizeFP32Coder::ReSize() {
}
if (!const_shape_) {
new_height_ = output_tensor_->shape()[1];
new_width_ = output_tensor_->shape()[2];
new_height_ = output_tensor_->shape().at(kNHWC_H);
new_width_ = output_tensor_->shape().at(kNHWC_W);
}
MS_CHECK_RET_CODE_WITH_EXE(MallocTmpBuffer(), "MallocTmpBuffer failed", FreeTmpBuffer());
@ -73,13 +72,10 @@ int ResizeFP32Coder::ReSize() {
return RET_OK;
}
// Bilinear interpolation :
// Bilinear interpolation considers the closest 2x2 neighborhood of known pixel values surrounding the unknown pixel.
// It takes a weighted average of these 4 pixels to arrive at its final interpolated value. Thus, we need to reserve
// twice bigger space than coordinates arrays for weight arrays. It means x_weight_len is twice as much as x_len in
// detail.
//
// Bicubic interpolation:
// Bicubic goes one step beyond bilinear by considering the closest 4x4 neighborhood of known pixels --- for a total of
// 16 pixels. Since these are at various distances from the unknown pixel, closer pixels are given a higher weighting in
// the calculation.
@ -178,7 +174,7 @@ int ResizeFP32Coder::DoCode(CoderContext *const context) {
code.CodeArray("y_weights", y_weights_, sizeof(float) * y_weight_len_, true);
code.CodeArray("x_weights", x_weights_, sizeof(float) * x_weight_len_, true);
int c = input_tensor_->shape().at(3);
int c = input_tensor_->shape().at(kNHWC_C);
code << "float *line0 = " << MemoryAllocator::GetInstance()->GetRuntimeAddr(line_buffer_) << ";\n";
code << "float *line1 = line0 + " << new_width_ << " * " << c << ";\n";
code.CodeFunction("ResizeBilinear", input_tensor_, output_tensor_, "input_shape", "output_shape", "y_bottoms",

View File

@ -64,5 +64,4 @@ int SoftMaxFP32Coder::DoCode(CoderContext *const context) {
}
REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Softmax, CPUOpCoderCreator<SoftMaxFP32Coder>)
} // namespace mindspore::lite::micro::nnacl

View File

@ -21,7 +21,6 @@ using mindspore::schema::PrimitiveType_Affine;
namespace mindspore {
namespace lite {
static void ReleaseParam(AffineParameter *affine, MatMulParameter *matmul) {
if (affine != nullptr) {
free(affine);

View File

@ -23,7 +23,6 @@ using mindspore::schema::PrimitiveType_TensorArrayWrite;
namespace mindspore {
namespace lite {
OpParameter *PopulateTensorArrayParameter(const void *prim) {
auto primitive = static_cast<const schema::Primitive *>(prim);
MS_ASSERT(primitive != nullptr);

View File

@ -29,9 +29,11 @@ using mindspore::lite::RET_OK;
using mindspore::lite::RET_PARAM_INVALID;
using mindspore::schema::PrimitiveType_Affine;
namespace mindspore::kernel {
constexpr auto kAffineMinInputNum = 3;
constexpr auto kAffineMaxInputNum = 4;
constexpr auto kAffineMaxOutputNum = 1;
constexpr auto kInputRow = 1;
constexpr auto kInputCol = 2;
int AffineFp32CPUKernel::DoActivation(lite::Tensor *tensor) {
auto data = static_cast<float *>(tensor->MutableData());
@ -127,10 +129,10 @@ int AffineFp32CPUKernel::FullRunInit() {
return RET_ERROR;
}
// src and dst shape: {batch, row, col}
splice_src_row_ = src_shape.at(1);
splice_src_col_ = src_shape.at(2);
splice_dst_row_ = dst_shape.at(1);
splice_dst_col_ = dst_shape.at(2);
splice_src_row_ = src_shape.at(kInputRow);
splice_src_col_ = src_shape.at(kInputCol);
splice_dst_row_ = dst_shape.at(kInputRow);
splice_dst_col_ = dst_shape.at(kInputCol);
if (splice_src_col_ * affine_parameter_->context_size_ != splice_dst_col_) {
MS_LOG(ERROR) << "splice kernel src_col not match dst_col";
return RET_ERROR;
@ -155,7 +157,7 @@ int AffineFp32CPUKernel::IncrementInit() {
// For affine op, the possible inputs are:
// { input, weight, bias, tensor_array_read }
// { input, weight, tensor_array_read }
if (in_tensors_.size() == 4) {
if (in_tensors_.size() == kAffineMaxInputNum) {
tensor_read_ = in_tensors_.at(3);
} else {
tensor_read_ = in_tensors_.at(2);
@ -163,8 +165,8 @@ int AffineFp32CPUKernel::IncrementInit() {
auto out_tensor = out_tensors_.at(kOutputIndex);
auto out_shape = out_tensor->shape();
matmul_col_ = out_shape.back();
matmul_row_ = out_shape.at(out_shape.size() - 2);
matmul_col_ = out_shape.at(kInputCol);
matmul_row_ = out_shape.at(kInputRow);
if (out_tensor->Size() != matmul_row_ * matmul_col_ * sizeof(float)) {
MS_LOG(ERROR) << "size mismatch!";
MS_LOG(ERROR) << "out_tensor->Size() = " << out_tensor->Size();
@ -257,7 +259,7 @@ kernel::InnerKernel *AffineFp32CPUKernel::FullMatmulKernelCreate() {
// For affine op, the possible inputs are:
// { input, weight, bias, tensor_array_read }
// { input, weight, tensor_array_read }
if (in_tensors_.size() == 4) {
if (in_tensors_.size() == kAffineMaxInputNum) {
input_tensors = {full_input_, in_tensors_.at(kWeightIndex), in_tensors_.at(kBiasIndex)};
} else {
input_tensors = {full_input_, in_tensors_.at(kWeightIndex)};
@ -302,7 +304,7 @@ kernel::InnerKernel *AffineFp32CPUKernel::IncrementMatmulKernelCreate() {
increment_output_ = new lite::Tensor(kNumberTypeFloat32, {1, 1, matmul_col});
increment_output_->MallocData();
if (in_tensors_.size() < 3) {
if (in_tensors_.size() < kAffineMinInputNum) {
MS_LOG(ERROR) << "wrong affine input size";
return nullptr;
}
@ -311,7 +313,7 @@ kernel::InnerKernel *AffineFp32CPUKernel::IncrementMatmulKernelCreate() {
// For affine op, the possible inputs are:
// { input, weight, bias, tensor_array_read }
// { input, weight, tensor_array_read }
if (in_tensors_.size() == 4) {
if (in_tensors_.size() == kAffineMaxInputNum) {
input_tensors = {increment_input_, in_tensors_.at(kWeightIndex), in_tensors_.at(kBiasIndex)};
} else {
input_tensors = {increment_input_, in_tensors_.at(kWeightIndex)};

View File

@ -32,7 +32,6 @@ using mindspore::schema::PrimitiveType_TensorArrayRead;
using mindspore::schema::PrimitiveType_TensorArrayWrite;
namespace mindspore::kernel {
constexpr int kTensorArrayReadInSize = 3;
constexpr int kTensorArrayWriteInSize = 4;
constexpr int kHandleIndex = 0;

View File

@ -26,9 +26,7 @@
#include "tools/optimizer/parallel/spliter.h"
namespace mindspore {
namespace opt {
const BaseRef EliminateConcatSplit::DefinePattern() const {
auto concat_var = std::make_shared<CondVar>(IsConcatNode);
auto split_prim = std::make_shared<ops::SplitWithOverlap>();
@ -41,13 +39,11 @@ CNodePtr GetRealPrevCNode(const AnfNodePtr &node) {
return nullptr;
}
auto cnode = node->cast<CNodePtr>();
if (IsRealCNodeKernel(cnode)) {
return cnode;
}
auto input0 = cnode->input(0);
if (IsPrimitive(input0, prim::kPrimMakeTuple)) {
auto temp_node = cnode->input(1);
if (temp_node == nullptr) {
@ -81,7 +77,6 @@ void ConcatSplitEliminate(const FuncGraphPtr &func_graph, const CNodePtr &cnode)
int pre_inputs_node_size = pre_inputs_size - 1;
auto pre_prim = GetValueNode<std::shared_ptr<ops::Concat>>(pre_cnode->input(kAnfPrimitiveIndex));
auto prim = GetValueNode<std::shared_ptr<ops::SplitWithOverlap>>(cnode->input(kAnfPrimitiveIndex));
if (prim->get_number_split() != pre_inputs_node_size) {
return;
}

View File

@ -63,7 +63,6 @@ std::vector<int64_t> GetSplitPadList(const std::shared_ptr<ops::Conv2DFusion> &o
}
namespace {
bool CalSplitOutputShape(int64_t splited_axis_value, const SplitInfo *split_info,
std::vector<int64_t> *split_axis_out_shape,
std::vector<int64_t> *split_axis_reduce_out_shape) {

View File

@ -20,7 +20,6 @@
namespace mindspore {
namespace opt {
AnfNodePtr IterNodeOutputs::Run(const FuncGraphPtr &func_graph, const AnfNodePtr &node) {
if (CheckIfFuncGraphIsNull(func_graph) != lite::RET_OK || CheckIfAnfNodeIsNull(node) != lite::RET_OK) {
return nullptr;
@ -41,6 +40,5 @@ AnfNodePtr IterNodeOutputs::Run(const FuncGraphPtr &func_graph, const AnfNodePtr
}
return nullptr;
}
} // namespace opt
} // namespace mindspore

View File

@ -22,7 +22,6 @@
namespace mindspore {
namespace opt {
AnfNodePtr NodeOutShapes::Run(const FuncGraphPtr &func_graph, const AnfNodePtr &node) {
if (CheckIfFuncGraphIsNull(func_graph) != lite::RET_OK || CheckIfAnfNodeIsNull(node) != lite::RET_OK) {
return nullptr;

View File

@ -21,7 +21,6 @@
#include "ops/affine.h"
namespace mindspore::opt {
static bool IsAffineNode(const BaseRef &n) {
if (utils::isa<AnfNodePtr>(n)) {
auto anf_node = utils::cast<AnfNodePtr>(n);

View File

@ -25,8 +25,9 @@
#include "tools/optimizer/common/gllo_utils.h"
namespace mindspore::opt {
constexpr auto kRowAxis = 1;
constexpr auto kInputWithBiasNum = 4;
constexpr auto kInputBias = 3;
static bool IsSpliceNode(const BaseRef &n) {
if (utils::isa<AnfNodePtr>(n)) {
@ -108,8 +109,8 @@ const AnfNodePtr AffineFusion::Process(const FuncGraphPtr &func_graph, const Anf
}
// construct affine node
std::vector<AnfNodePtr> affine_inputs = {NewValueNode(affine_prim), splice_node->input(1), matmul_node->input(2)};
if (matmul_node->inputs().size() == 4) {
affine_inputs.push_back(matmul_node->input(3));
if (matmul_node->inputs().size() == kInputWithBiasNum) {
affine_inputs.push_back(matmul_node->input(kInputBias));
}
auto affine_node = func_graph->NewCNode(affine_inputs);
affine_node->set_fullname_with_scope(matmul_node->fullname_with_scope());

View File

@ -26,7 +26,6 @@
#include "tools/converter/ops/ops_def.h"
namespace mindspore::opt {
constexpr auto kDefaultIndex = 0;
constexpr auto kInputIndex = 1;
constexpr auto kDefaultNumTensors = 1;
@ -188,5 +187,4 @@ const AnfNodePtr AddTensorArray::Process(const FuncGraphPtr &func_graph, const A
return node;
}
} // namespace mindspore::opt

View File

@ -32,7 +32,6 @@
using mindspore::schema::PrimitiveType_Conv2DFusion;
namespace mindspore {
namespace opt {
int Conv2DInfo::CheckStrategy(const SplitStrategy &strategy) {
int split_count = 0;
Strategys strategys = strategy.strategys;

View File

@ -195,6 +195,5 @@ int OperatorInfo::DoSplit() {
}
return lite::RET_OK;
}
} // namespace opt
} // namespace mindspore

View File

@ -133,6 +133,5 @@ AnfNodePtr ParallelPass::Run(const FuncGraphPtr &func_graph, const AnfNodePtr &n
}
return parallel_operator->replace_op();
}
} // namespace opt
} // namespace mindspore