tensor_nele_numel_permute_positive_remainder
This commit is contained in:
parent
6abef12861
commit
2a2d3cd374
|
@ -191,6 +191,7 @@ mindspore.ops.function
|
|||
mindspore.ops.matrix_determinant
|
||||
mindspore.ops.mul
|
||||
mindspore.ops.neg
|
||||
mindspore.ops.positive
|
||||
mindspore.ops.pow
|
||||
mindspore.ops.roll
|
||||
mindspore.ops.round
|
||||
|
@ -352,6 +353,8 @@ Array操作
|
|||
mindspore.ops.meshgrid
|
||||
mindspore.ops.normal
|
||||
mindspore.ops.nonzero
|
||||
mindspore.ops.numel
|
||||
mindspore.ops.permute
|
||||
mindspore.ops.population_count
|
||||
mindspore.ops.range
|
||||
mindspore.ops.rank
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
mindspore.Tensor.nelement
|
||||
==========================
|
||||
|
||||
.. py:method:: mindspore.Tensor.nelement()
|
||||
|
||||
numel()的别名。
|
||||
|
||||
详情请参考 :func:`mindspore.ops.numel`。
|
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.numel
|
||||
=======================
|
||||
|
||||
.. py:method:: mindspore.Tensor.numel()
|
||||
|
||||
详情请参考 :func:`mindspore.ops.numel`。
|
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.permute
|
||||
=========================
|
||||
|
||||
.. py:method:: mindspore.Tensor.permute(*dims)
|
||||
|
||||
详情请参考 :func:`mindspore.ops.permute`。
|
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.positive
|
||||
==========================
|
||||
|
||||
.. py:method:: mindspore.Tensor.positive()
|
||||
|
||||
详情请参考 :func:`mindspore.ops.positive`。
|
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.remainder
|
||||
===========================
|
||||
|
||||
.. py:method:: mindspore.Tensor.remainder(divisor)
|
||||
|
||||
详情请参考 :func:`mindspore.ops.remainder`。
|
|
@ -141,13 +141,18 @@ mindspore.Tensor
|
|||
mindspore.Tensor.ndim
|
||||
mindspore.Tensor.ndimension
|
||||
mindspore.Tensor.negative
|
||||
mindspore.Tensor.nelement
|
||||
mindspore.Tensor.numel
|
||||
mindspore.Tensor.nonzero
|
||||
mindspore.Tensor.norm
|
||||
mindspore.Tensor.permute
|
||||
mindspore.Tensor.positive
|
||||
mindspore.Tensor.pow
|
||||
mindspore.Tensor.prod
|
||||
mindspore.Tensor.ptp
|
||||
mindspore.Tensor.random_categorical
|
||||
mindspore.Tensor.ravel
|
||||
mindspore.Tensor.remainder
|
||||
mindspore.Tensor.renorm
|
||||
mindspore.Tensor.repeat
|
||||
mindspore.Tensor.repeat_interleave
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
mindspore.ops.numel
|
||||
====================
|
||||
|
||||
.. py:function:: mindspore.ops.numel(x)
|
||||
|
||||
返回Tensor的元素的总数量。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入Tensor。
|
||||
|
||||
返回:
|
||||
int。Tensor的元素的总数量。
|
|
@ -0,0 +1,16 @@
|
|||
mindspore.ops.permute
|
||||
=====================
|
||||
|
||||
.. py:function:: mindspore.ops.permute(x, dims)
|
||||
|
||||
按照输入 `dims` 的维度顺序排列输入Tensor。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入Tensor。
|
||||
- **dims** (Union[tuple(int), list(int), int]) - 维度的顺序,permute根据 `dims` 的顺序重新排列 `x` 。
|
||||
|
||||
返回:
|
||||
Tensor,具有和输入Tensor相同的维数,按照 `dims` 重新排列。
|
||||
|
||||
异常:
|
||||
- **ValueError** - `dims` 的元素总量不等于 `x` 的维数。
|
|
@ -0,0 +1,15 @@
|
|||
mindspore.ops.positive
|
||||
======================
|
||||
|
||||
.. py:function:: mindspore.ops.positive(x)
|
||||
|
||||
返回输入Tensor。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入Tensor。
|
||||
|
||||
返回:
|
||||
输入Tensor。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 的dtype是bool。
|
|
@ -0,0 +1,28 @@
|
|||
mindspore.ops.remainder
|
||||
=======================
|
||||
|
||||
.. py:function:: mindspore.ops.remainder(x, y)
|
||||
|
||||
逐元素计算第一个元素除第二个元素的余数。
|
||||
|
||||
`x` 和 `y` 的输入遵守隐式类型转换规则,以使数据类型一致。输入必须是两个Tensor或者一个Tensor和一个Scalar。当输入是两个Tensor时,两个dtype都不能是bool类型,shape可以广播。当输入是Tensor和Scalar时,这个Scalar只能是常数。
|
||||
|
||||
.. math::
|
||||
out_{i} = input_{i} \text{ % } other_{i}
|
||||
|
||||
.. warning::
|
||||
- 输入数值不支持0。
|
||||
- 当输入元素超过2048时,操作的精确度无法保证mini表格的千分之二的要求。
|
||||
- 由于架构不同,该操作符在NPU和CPU上的计算结果可能不一致。
|
||||
- 如果shape表示为(D1,D2…Dn),那么D1 \ * D2……\ * DN <= 1000000,n <= 8。
|
||||
|
||||
参数:
|
||||
- **x** (Union[Tensor, numbers.Number, bool]) - 第一个输入可以是数字,bool或者dtype是数字的Tensor。
|
||||
- **y** (Union[Tensor, numbers.Number, bool]) - 当第一个输入是一个Tensor时,第二个输入可以是数字,bool或者dtype是数字的Tensor。
|
||||
|
||||
返回:
|
||||
Tensor,具有和其中一个输入广播后相同的shape,数据类型是两个输入中精度较高或数字较高的数据类型。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 和 `y` 的类型不是Tensor,number或bool。
|
||||
- **ValueError** - `x` 和 `y` 的shape不能广播成对方的shape。
|
|
@ -147,13 +147,18 @@
|
|||
mindspore.Tensor.ndim
|
||||
mindspore.Tensor.ndimension
|
||||
mindspore.Tensor.negative
|
||||
mindspore.Tensor.nelement
|
||||
mindspore.Tensor.numel
|
||||
mindspore.Tensor.nonzero
|
||||
mindspore.Tensor.norm
|
||||
mindspore.Tensor.permute
|
||||
mindspore.Tensor.positive
|
||||
mindspore.Tensor.pow
|
||||
mindspore.Tensor.prod
|
||||
mindspore.Tensor.ptp
|
||||
mindspore.Tensor.random_categorical
|
||||
mindspore.Tensor.ravel
|
||||
mindspore.Tensor.remainder
|
||||
mindspore.Tensor.renorm
|
||||
mindspore.Tensor.repeat
|
||||
mindspore.Tensor.repeat_interleave
|
||||
|
|
|
@ -192,6 +192,7 @@ Element-by-Element Operations
|
|||
mindspore.ops.matrix_determinant
|
||||
mindspore.ops.mul
|
||||
mindspore.ops.neg
|
||||
mindspore.ops.positive
|
||||
mindspore.ops.pow
|
||||
mindspore.ops.roll
|
||||
mindspore.ops.round
|
||||
|
@ -352,6 +353,8 @@ Array Operation
|
|||
mindspore.ops.meshgrid
|
||||
mindspore.ops.normal
|
||||
mindspore.ops.nonzero
|
||||
mindspore.ops.numel
|
||||
mindspore.ops.permute
|
||||
mindspore.ops.population_count
|
||||
mindspore.ops.range
|
||||
mindspore.ops.rank
|
||||
|
|
|
@ -245,6 +245,11 @@ BuiltInTypeMap &GetMethodMap() {
|
|||
{"min", std::string("min")}, // P.reduce_min()
|
||||
{"pow", std::string("pow")}, // P.Pow()
|
||||
{"log", std::string("log")}, // P.Log()
|
||||
{"nelement", std::string("numel")}, // numel()
|
||||
{"numel", std::string("numel")}, // numel()
|
||||
{"permute", std::string("permute")}, // permute()
|
||||
{"positive", std::string("positive")}, // positive()
|
||||
{"remainder", std::string("remainder")}, // remainder()
|
||||
{"minimum", std::string("minimum")}, // P.Minimum()
|
||||
{"cosh", std::string("cosh")}, // P.Cosh()
|
||||
{"tanh", std::string("tanh")}, // P.Tanh()
|
||||
|
|
|
@ -1080,6 +1080,38 @@ def rot90(x, k, dims):
|
|||
return F.rot90(x, k, dims)
|
||||
|
||||
|
||||
def numel(x):
|
||||
"""
|
||||
Returns a Scalar of type int that represents the total number of elements in the Tensor.
|
||||
"""
|
||||
return F.numel(x)
|
||||
|
||||
|
||||
def permute(x, *dims):
|
||||
"""
|
||||
Permutes the dimensions of the input tensor according to input permutation.
|
||||
"""
|
||||
if dims is None:
|
||||
raise ValueError(f"For Tensor.permute, the dims must not be none.")
|
||||
if len(dims) == 1:
|
||||
return F.permute(x, *dims)
|
||||
return F.permute(x, dims)
|
||||
|
||||
|
||||
def positive(x):
|
||||
"""
|
||||
Return self Tensor.
|
||||
"""
|
||||
return F.positive(x)
|
||||
|
||||
|
||||
def remainder(x, divisor):
|
||||
"""
|
||||
Returns element-wise remainder of division.
|
||||
"""
|
||||
return F.remainder(x, divisor)
|
||||
|
||||
|
||||
def unique_consecutive(x, return_idx=False, return_counts=False, axis=None):
|
||||
"""
|
||||
Returns the elements that are unique in each consecutive group of equivalent elements in the input tensor.
|
||||
|
|
|
@ -1744,6 +1744,47 @@ class Tensor(Tensor_):
|
|||
self._init_check()
|
||||
return tensor_operator_registry.get('rot90')(self, k, dims)
|
||||
|
||||
def nelement(self):
|
||||
r"""
|
||||
Alias for numel().
|
||||
|
||||
For details, please refer to :func:`mindspore.ops.numel`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('nelement')(self)
|
||||
|
||||
def numel(self):
|
||||
r"""
|
||||
For details, please refer to :func:`mindspore.ops.numel`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('numel')(self)
|
||||
|
||||
def permute(self, *dims):
|
||||
"""
|
||||
For details, please refer to :func:`mindspore.ops.permute`.
|
||||
"""
|
||||
self._init_check()
|
||||
if not dims:
|
||||
raise ValueError(f"For Tensor.permute, the dims must not be none.")
|
||||
if len(dims) == 1:
|
||||
return tensor_operator_registry.get("permute")(self, *dims)
|
||||
return tensor_operator_registry.get("permute")(self, dims)
|
||||
|
||||
def positive(self):
|
||||
"""
|
||||
For details, please refer to :func:`mindspore.ops.positive`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get("positive")(self)
|
||||
|
||||
def remainder(self, divisor):
|
||||
r"""
|
||||
For details, please refer to :func:`mindspore.ops.remainder`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('remainder')(self, divisor)
|
||||
|
||||
def flatten(self, order='C'):
|
||||
r"""
|
||||
For details, please refer to :func:`mindspore.ops.flatten`.
|
||||
|
|
|
@ -232,6 +232,9 @@ from .math_func import (
|
|||
erfc,
|
||||
cdist,
|
||||
ceil,
|
||||
positive,
|
||||
numel,
|
||||
permute,
|
||||
bernoulli,
|
||||
bessel_i0,
|
||||
bessel_i0e,
|
||||
|
|
|
@ -104,6 +104,8 @@ tensor_le = P.LessEqual()
|
|||
tensor_gt = P.Greater()
|
||||
tensor_ge = P.GreaterEqual()
|
||||
not_equal = P.NotEqual()
|
||||
size_ = P.Size()
|
||||
transpose_ = P.Transpose()
|
||||
|
||||
#####################################
|
||||
# Private Operation Functions.
|
||||
|
@ -457,6 +459,87 @@ def neg(x):
|
|||
return neg_tensor(x)
|
||||
|
||||
|
||||
def positive(x):
|
||||
r"""
|
||||
Return self Tensor.
|
||||
|
||||
Args:
|
||||
x(Tensor): Input Tensor.
|
||||
|
||||
Returns:
|
||||
Tensor, self input.
|
||||
|
||||
Raises:
|
||||
TypeError: If the dtype of self Tensor is bool type.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), ms.float32)
|
||||
>>> print(ops.positive(x))
|
||||
[-5.0, 1.5, 3.0, 100.0]
|
||||
"""
|
||||
if x.dtype == mstype.bool_:
|
||||
raise TypeError("For positive, the type of tensor can not be bool.")
|
||||
return x
|
||||
|
||||
|
||||
def numel(x):
|
||||
r"""
|
||||
Returns a Scalar of type int that represents the total number of elements in the Tensor.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input Tensor.
|
||||
|
||||
Returns:
|
||||
int. A scalar representing the total of elements in the Tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
||||
>>> print(ops.numel(input_x))
|
||||
4
|
||||
"""
|
||||
return size_(x)
|
||||
|
||||
|
||||
def permute(x, dims):
|
||||
"""
|
||||
Permutes the dimensions of the input tensor according to input `dims` .
|
||||
|
||||
Args:
|
||||
x(Tensor): Input Tensor.
|
||||
dims(Union[tuple(int), list(int), int]): Permute will permute the tensor to the input `dims` order.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dimension as input tensor, with `dims` suitably permuted.
|
||||
|
||||
Raises:
|
||||
ValueError: If `dims` is none.
|
||||
ValueError: If the number of `dims` is not equal to Tensor's ndim.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
|
||||
>>> input_perm = (0, 2, 1)
|
||||
>>> print(ops.permute(input_x, input_perm))
|
||||
[[[ 1. 4.]
|
||||
[ 2. 5.]
|
||||
[ 3. 6.]]
|
||||
[[ 7. 10.]
|
||||
[ 8. 11.]
|
||||
[ 9. 12.]]]
|
||||
"""
|
||||
return transpose_(x, dims)
|
||||
|
||||
|
||||
def ceil(x):
|
||||
r"""
|
||||
Rounds a tensor up to the closest integer element-wise.
|
||||
|
@ -6912,6 +6995,8 @@ __all__ = [
|
|||
'equal',
|
||||
'not_equal',
|
||||
'ne',
|
||||
'numel',
|
||||
'permute',
|
||||
'inplace_update',
|
||||
'inplace_add',
|
||||
'inplace_sub',
|
||||
|
@ -6929,6 +7014,7 @@ __all__ = [
|
|||
'maximum',
|
||||
'minimum',
|
||||
'median',
|
||||
'positive',
|
||||
'floor',
|
||||
'logical_not',
|
||||
'logical_or',
|
||||
|
|
|
@ -368,6 +368,11 @@ tensor_operator_registry.register('argmax', P.Argmax)
|
|||
tensor_operator_registry.register('cumsum', P.CumSum)
|
||||
tensor_operator_registry.register('cummin', cummin)
|
||||
tensor_operator_registry.register('cummax', cummax)
|
||||
tensor_operator_registry.register('nelement', numel)
|
||||
tensor_operator_registry.register('numel', numel)
|
||||
tensor_operator_registry.register('positive', positive)
|
||||
tensor_operator_registry.register('permute', permute)
|
||||
tensor_operator_registry.register('remainder', remainder)
|
||||
tensor_operator_registry.register('index_fill', index_fill)
|
||||
tensor_operator_registry.register('bitwise_and', bitwise_and)
|
||||
tensor_operator_registry.register('bitwise_or', bitwise_or)
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.numel(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_numel(mode):
|
||||
"""
|
||||
Feature: ops.numel
|
||||
Description: Verify the result of numel
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)), ms.float32)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = 24
|
||||
assert np.allclose(output, expect_output)
|
|
@ -0,0 +1,55 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x, dims):
|
||||
return ops.permute(x, dims)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_permute(mode):
|
||||
"""
|
||||
Feature: ops.permute
|
||||
Description: Verify the result of permute
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.arange(2 * 3 * 4).reshape(2, 3, 4), ms.float32)
|
||||
input_perm = (0, 2, 1)
|
||||
net = Net()
|
||||
output = net(x, input_perm)
|
||||
expect_output = [[[0, 4, 8],
|
||||
[1, 5, 9],
|
||||
[2, 6, 10],
|
||||
[3, 7, 11]],
|
||||
[[12, 16, 20],
|
||||
[13, 17, 21],
|
||||
[14, 18, 22],
|
||||
[15, 19, 23]]]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.positive(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_positive(mode):
|
||||
"""
|
||||
Feature: ops.positive
|
||||
Description: Verify the result of positive
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), ms.float32)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = [-5.0, 1.5, 3.0, 100.0]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return x.nelement()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_tensor_nelement(mode):
|
||||
"""
|
||||
Feature: tensor.nelement
|
||||
Description: Verify the result of nelement
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)), ms.float32)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = 24
|
||||
assert np.allclose(output, expect_output)
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return x.numel()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_tensor_numel(mode):
|
||||
"""
|
||||
Feature: tensor.numel
|
||||
Description: Verify the result of numel
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)), ms.float32)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = 24
|
||||
assert np.allclose(output, expect_output)
|
|
@ -0,0 +1,55 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x, dims):
|
||||
return x.permute(dims)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_tensor_permute(mode):
|
||||
"""
|
||||
Feature: tensor.permute
|
||||
Description: Verify the result of permute
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.arange(2 * 3 * 4).reshape(2, 3, 4), ms.float32)
|
||||
input_perm = (0, 2, 1)
|
||||
net = Net()
|
||||
output = net(x, input_perm)
|
||||
expect_output = [[[0, 4, 8],
|
||||
[1, 5, 9],
|
||||
[2, 6, 10],
|
||||
[3, 7, 11]],
|
||||
[[12, 16, 20],
|
||||
[13, 17, 21],
|
||||
[14, 18, 22],
|
||||
[15, 19, 23]]]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return x.positive()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_tensor_positive(mode):
|
||||
"""
|
||||
Feature: tensor.positive
|
||||
Description: Verify the result of positive
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), ms.float32)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = [-5.0, 1.5, 3.0, 100.0]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,52 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x, divisor):
|
||||
return x.remainder(divisor)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_tensor_remainder(mode):
|
||||
"""
|
||||
Feature: tensor.remainder
|
||||
Description: Verify the result of remainder
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.array([-3, -2, -1, 1, 2, 3]), ms.float32)
|
||||
net = Net()
|
||||
output = net(x, -1.5)
|
||||
expect_output1 = [0, -0.5, -1, -0.5, -1, 0]
|
||||
assert np.allclose(output.asnumpy(), expect_output1)
|
||||
x = Tensor(np.array([-30, -17, -3, 61, 17, 30]), ms.float32)
|
||||
y = Tensor(np.array([-1.5, -2, -3.5, 1.5, 2, 3.5]), ms.float32)
|
||||
output = net(x, y)
|
||||
expect_output2 = [0, -1, -3, 1, 1, 2]
|
||||
assert np.allclose(output.asnumpy(), expect_output2)
|
Loading…
Reference in New Issue