!22222 [assistant][ops] Add new loader PennTreebankDataset
Merge pull request !22222 from 杨旭华/PennTreebankDataset
This commit is contained in:
commit
2a2cd5e4ca
|
@ -107,6 +107,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/lj_speech_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/manifest_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/minddata_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/penn_treebank_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/photo_tour_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/places365_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/qmnist_node.h"
|
||||
|
@ -1398,6 +1399,14 @@ MnistDataset::MnistDataset(const std::vector<char> &dataset_dir, const std::vect
|
|||
}
|
||||
|
||||
#ifndef ENABLE_ANDROID
|
||||
PennTreebankDataset::PennTreebankDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
int64_t num_samples, ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
auto ds = std::make_shared<PennTreebankNode>(CharToString(dataset_dir), CharToString(usage), num_samples, shuffle,
|
||||
num_shards, shard_id, cache);
|
||||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
PhotoTourDataset::PhotoTourDataset(const std::vector<char> &dataset_dir, const std::vector<char> &name,
|
||||
const std::vector<char> &usage, const std::shared_ptr<Sampler> &sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
|
|
|
@ -43,6 +43,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/kmnist_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/mnist_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/penn_treebank_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/random_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/speech_commands_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/stl10_node.h"
|
||||
|
@ -342,6 +343,18 @@ PYBIND_REGISTER(MnistNode, 2, ([](const py::module *m) {
|
|||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(PennTreebankNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<PennTreebankNode, DatasetNode, std::shared_ptr<PennTreebankNode>>(
|
||||
*m, "PennTreebankNode", "to create a PennTreebankNode")
|
||||
.def(py::init([](std::string dataset_dir, std::string usage, int32_t num_samples, int32_t shuffle,
|
||||
int32_t num_shards, int32_t shard_id) {
|
||||
auto penn_treebank = std::make_shared<PennTreebankNode>(
|
||||
dataset_dir, usage, num_samples, toShuffleMode(shuffle), num_shards, shard_id, nullptr);
|
||||
THROW_IF_ERROR(penn_treebank->ValidateParams());
|
||||
return penn_treebank;
|
||||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(PhotoTourNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<PhotoTourNode, DatasetNode, std::shared_ptr<PhotoTourNode>>(
|
||||
*m, "PhotoTourNode", "to create a PhotoTourNode")
|
||||
|
|
|
@ -24,6 +24,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
|||
mappable_leaf_op.cc
|
||||
mnist_op.cc
|
||||
nonmappable_leaf_op.cc
|
||||
penn_treebank_op.cc
|
||||
photo_tour_op.cc
|
||||
places365_op.cc
|
||||
qmnist_op.cc
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/penn_treebank_op.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include "debug/common.h"
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/io_block.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/random.h"
|
||||
#include "minddata/dataset/util/wait_post.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
PennTreebankOp::PennTreebankOp(int32_t num_workers, int64_t total_rows, int32_t worker_connector_size,
|
||||
std::unique_ptr<DataSchema> schema, const std::vector<std::string> &file_list,
|
||||
int32_t op_connector_size, bool shuffle_files, int32_t num_devices, int32_t device_id)
|
||||
: TextFileOp(num_workers, total_rows, worker_connector_size, std::move(schema), file_list, op_connector_size,
|
||||
shuffle_files, num_devices, device_id) {}
|
||||
|
||||
// A print method typically used for debugging.
|
||||
void PennTreebankOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info.
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal 1-liner info for this op.
|
||||
out << "\n";
|
||||
} else {
|
||||
// Call the super class for displaying any common detailed info.
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal stuff.
|
||||
out << "\nRow count: " << total_rows_ << "\nDevice id: " << device_id_ << "\nNumber of devices: " << num_devices_
|
||||
<< "\nShuffle files: " << ((shuffle_files_) ? "yes" : "no") << "\nPennTreebank files list:\n";
|
||||
for (size_t i = 0; i < text_files_list_.size(); ++i) {
|
||||
out << " " << text_files_list_[i];
|
||||
}
|
||||
out << "\nData Schema:\n";
|
||||
out << *data_schema_ << "\n\n";
|
||||
}
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,69 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_PENN_TREEBANK_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_PENN_TREEBANK_OP_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/text_file_op.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class JaggedConnector;
|
||||
|
||||
class PennTreebankOp : public TextFileOp {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] num_workers Number of workers reading images in parallel
|
||||
/// \param[in] num_samples The number of samples to be included in the dataset.
|
||||
/// \param[in] worker_connector_size Size of each internal queue.
|
||||
/// \param[in] data_schema Path to dataset schema file.
|
||||
/// \param[in] file_list List of files to be read to search for a pattern of files. The list
|
||||
/// will be sorted in a lexicographical order.
|
||||
/// \param[in] op_connector_size Size of each queue in the connector that the child operator pulls from.
|
||||
/// \param[in] shuffle_files Whether or not to shuffle the files before reading data.
|
||||
/// \param[in] num_devices Number of devices that the dataset should be divided into.
|
||||
/// \param[in] device_id The device ID within num_devices. This argument should be
|
||||
/// specified only when num_devices is also specified.
|
||||
PennTreebankOp(int32_t num_workers, int64_t num_samples, int32_t worker_connector_size, std::unique_ptr<DataSchema>,
|
||||
const std::vector<std::string> &file_list, int32_t op_connector_size, bool shuffle_files,
|
||||
int32_t num_devices, int32_t device_id);
|
||||
|
||||
/// \brief Default destructor.
|
||||
~PennTreebankOp() = default;
|
||||
|
||||
/// \brief A print method typically used for debugging.
|
||||
/// \param[in] out he output stream to write output to.
|
||||
/// \param[in] show_all A bool to control if you want to show all info or just a summary.
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
|
||||
/// \brief Op name getter.
|
||||
/// \return Name of the current Op.
|
||||
std::string Name() const override { return "PennTreebankOp"; }
|
||||
|
||||
/// \brief DatasetName name getter.
|
||||
/// \return DatasetName of the current Op.
|
||||
std::string DatasetName(bool upper = false) const { return upper ? "PennTreebank" : "penn treebank"; }
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_PENN_TREEBANK_OP_H_
|
|
@ -167,8 +167,7 @@ Status TextFileOp::FillIOBlockQueue(const std::vector<int64_t> &i_keys) {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Internal helper function to calculate rows
|
||||
int64_t CountTotalRows(const std::string &file) {
|
||||
int64_t TextFileOp::CountTotalRows(const std::string &file) {
|
||||
auto realpath = FileUtils::GetRealPath(file.data());
|
||||
if (!realpath.has_value()) {
|
||||
MS_LOG(ERROR) << "Invalid file, " << file << " does not exist.";
|
||||
|
@ -216,9 +215,24 @@ Status TextFileOp::CalculateNumRowsPerShard() {
|
|||
|
||||
Status TextFileOp::CountAllFileRows(const std::vector<std::string> &files, int64_t *count) {
|
||||
RETURN_UNEXPECTED_IF_NULL(count);
|
||||
int32_t num_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
int32_t connector_que_size = GlobalContext::config_manager()->op_connector_size();
|
||||
int32_t worker_connector_size = GlobalContext::config_manager()->worker_connector_size();
|
||||
const int32_t shard_id = 0;
|
||||
const int32_t num_shards = 1;
|
||||
const int64_t num_samples = 0;
|
||||
bool shuffle_files = false;
|
||||
// Do internal Schema generation.
|
||||
auto schema = std::make_unique<DataSchema>();
|
||||
|
||||
// Create and initialize
|
||||
std::shared_ptr<TextFileOp> op =
|
||||
std::make_shared<TextFileOp>(num_workers, num_samples, worker_connector_size, std::move(schema), files,
|
||||
connector_que_size, shuffle_files, num_shards, shard_id);
|
||||
RETURN_IF_NOT_OK(op->Init());
|
||||
*count = 0;
|
||||
for (auto file : files) {
|
||||
*count += CountTotalRows(file);
|
||||
*count += op->CountTotalRows(file);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
|
|
@ -82,7 +82,7 @@ class TextFileOp : public NonMappableLeafOp {
|
|||
// @return Vector of the input file names
|
||||
std::vector<std::string> FileNames() { return text_files_list_; }
|
||||
|
||||
private:
|
||||
protected:
|
||||
// Parses a single row and puts the data into a tensor table.
|
||||
// @param line - the content of the row.
|
||||
// @param tensor_table - the tensor table to put the parsed data in.
|
||||
|
@ -111,6 +111,11 @@ class TextFileOp : public NonMappableLeafOp {
|
|||
// @return - Status
|
||||
Status ComputeColMap() override;
|
||||
|
||||
// Count number of rows in each file.
|
||||
// @param file - txt file name.
|
||||
// @return int64_t - the total number of rows in file.
|
||||
int64_t CountTotalRows(const std::string &file);
|
||||
|
||||
std::vector<std::string> text_files_list_;
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
};
|
||||
|
|
|
@ -98,6 +98,7 @@ constexpr char kLJSpeechNode[] = "LJSpeechDataset";
|
|||
constexpr char kManifestNode[] = "ManifestDataset";
|
||||
constexpr char kMindDataNode[] = "MindDataDataset";
|
||||
constexpr char kMnistNode[] = "MnistDataset";
|
||||
constexpr char kPennTreebankNode[] = "PennTreebankDataset";
|
||||
constexpr char kPhotoTourNode[] = "PhotoTourDataset";
|
||||
constexpr char kPlaces365Node[] = "Places365Dataset";
|
||||
constexpr char kQMnistNode[] = "QMnistDataset";
|
||||
|
|
|
@ -24,6 +24,7 @@ set(DATASET_ENGINE_IR_DATASETOPS_SOURCE_SRC_FILES
|
|||
manifest_node.cc
|
||||
minddata_node.cc
|
||||
mnist_node.cc
|
||||
penn_treebank_node.cc
|
||||
photo_tour_node.cc
|
||||
places365_node.cc
|
||||
qmnist_node.cc
|
||||
|
|
|
@ -0,0 +1,198 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/penn_treebank_node.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/penn_treebank_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Constructor for PennTreebankNode.
|
||||
PennTreebankNode::PennTreebankNode(const std::string &dataset_dir, const std::string &usage, int64_t num_samples,
|
||||
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
|
||||
const std::shared_ptr<DatasetCache> &cache)
|
||||
: NonMappableSourceNode(std::move(cache)),
|
||||
dataset_dir_(dataset_dir),
|
||||
usage_(usage),
|
||||
num_samples_(num_samples),
|
||||
shuffle_(shuffle),
|
||||
num_shards_(num_shards),
|
||||
shard_id_(shard_id),
|
||||
penn_treebank_files_list_(WalkAllFiles(usage, dataset_dir)) {
|
||||
// Update the num_shards_ in global context. this number is only used for now by auto_num_worker_pass. User discretion
|
||||
// is advised. Auto_num_worker_pass is currently an experimental feature which can still work if the num_shards_ isn't
|
||||
// 100% correct. The reason behind is for now, PreBuildSampler doesn't offer a way to return num_shards. Once
|
||||
// PreBuildSampler is phased out, this can be cleaned up.
|
||||
GlobalContext::config_manager()->set_num_shards_for_auto_num_workers(num_shards_);
|
||||
}
|
||||
|
||||
std::shared_ptr<DatasetNode> PennTreebankNode::Copy() {
|
||||
auto node =
|
||||
std::make_shared<PennTreebankNode>(dataset_dir_, usage_, num_samples_, shuffle_, num_shards_, shard_id_, cache_);
|
||||
return node;
|
||||
}
|
||||
|
||||
void PennTreebankNode::Print(std::ostream &out) const {
|
||||
out << (Name() + "(cache: " + ((cache_ != nullptr) ? "true" : "false") +
|
||||
", num_shards: " + std::to_string(num_shards_) + ", shard_id: " + std::to_string(shard_id_) + ")");
|
||||
}
|
||||
|
||||
Status PennTreebankNode::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
|
||||
RETURN_IF_NOT_OK(ValidateDatasetDirParam("PennTreebankNode", dataset_dir_));
|
||||
RETURN_IF_NOT_OK(ValidateStringValue("PennTreebankNode", usage_, {"train", "test", "valid", "all"}));
|
||||
if (num_samples_ < 0) {
|
||||
std::string err_msg = "PennTreebankNode: Invalid number of samples: " + std::to_string(num_samples_);
|
||||
LOG_AND_RETURN_STATUS_SYNTAX_ERROR(err_msg);
|
||||
}
|
||||
RETURN_IF_NOT_OK(ValidateDatasetShardParams("PennTreebankNode", num_shards_, shard_id_));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Function to build PennTreebankNode.
|
||||
Status PennTreebankNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) {
|
||||
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
|
||||
// Sort the dataset files in a lexicographical order.
|
||||
std::vector<std::string> sorted_dataset_files = penn_treebank_files_list_;
|
||||
std::sort(sorted_dataset_files.begin(), sorted_dataset_files.end());
|
||||
// Do internal Schema generation.
|
||||
auto schema = std::make_unique<DataSchema>();
|
||||
RETURN_IF_NOT_OK(schema->AddColumn(ColDescriptor("text", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
|
||||
// Create and initialize PennTreebankNode.
|
||||
std::shared_ptr<PennTreebankOp> penn_treebank_op =
|
||||
std::make_shared<PennTreebankOp>(num_workers_, num_samples_, worker_connector_size_, std::move(schema),
|
||||
sorted_dataset_files, connector_que_size_, shuffle_files, num_shards_, shard_id_);
|
||||
RETURN_IF_NOT_OK(penn_treebank_op->Init());
|
||||
// If a global shuffle is used for PennTreebank, it will inject a shuffle op over the PennTreebank.
|
||||
// But, if there is a cache in the tree, we do not need the global shuffle and the shuffle op should not be built.
|
||||
// This is achieved in the cache transform pass where we call MakeSimpleProducer to reset PennTreebank's shuffle
|
||||
// option to false.
|
||||
if (shuffle_ == ShuffleMode::kGlobal) {
|
||||
// Inject ShuffleOp.
|
||||
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
|
||||
int64_t num_rows = 0;
|
||||
// First, get the number of rows in the dataset.
|
||||
RETURN_IF_NOT_OK(PennTreebankOp::CountAllFileRows(penn_treebank_files_list_, &num_rows));
|
||||
// Add the shuffle op after this op.
|
||||
RETURN_IF_NOT_OK(
|
||||
AddShuffleOp(sorted_dataset_files.size(), num_shards_, num_rows, 0, connector_que_size_, &shuffle_op));
|
||||
shuffle_op->SetTotalRepeats(GetTotalRepeats());
|
||||
shuffle_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
node_ops->push_back(shuffle_op);
|
||||
}
|
||||
penn_treebank_op->SetTotalRepeats(GetTotalRepeats());
|
||||
penn_treebank_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
// Add PennTreebankNode.
|
||||
node_ops->push_back(penn_treebank_op);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get the shard id of node.
|
||||
Status PennTreebankNode::GetShardId(int32_t *shard_id) {
|
||||
*shard_id = shard_id_;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get Dataset size.
|
||||
Status PennTreebankNode::GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) {
|
||||
if (dataset_size_ > 0) {
|
||||
*dataset_size = dataset_size_;
|
||||
return Status::OK();
|
||||
}
|
||||
int64_t num_rows, sample_size = num_samples_;
|
||||
RETURN_IF_NOT_OK(PennTreebankOp::CountAllFileRows(penn_treebank_files_list_, &num_rows));
|
||||
num_rows = static_cast<int64_t>(ceil(num_rows / (1.0 * num_shards_)));
|
||||
*dataset_size = sample_size > 0 ? std::min(num_rows, sample_size) : num_rows;
|
||||
dataset_size_ = *dataset_size;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status PennTreebankNode::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["num_parallel_workers"] = num_workers_;
|
||||
args["dataset_dir"] = dataset_dir_;
|
||||
args["usage"] = usage_;
|
||||
args["num_samples"] = num_samples_;
|
||||
args["shuffle"] = shuffle_;
|
||||
args["num_shards"] = num_shards_;
|
||||
args["shard_id"] = shard_id_;
|
||||
if (cache_ != nullptr) {
|
||||
nlohmann::json cache_args;
|
||||
RETURN_IF_NOT_OK(cache_->to_json(&cache_args));
|
||||
args["cache"] = cache_args;
|
||||
}
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Note: The following two functions are common among NonMappableSourceNode and should be promoted to its parent class.
|
||||
// PennTreebank by itself is a non-mappable dataset that does not support sampling.
|
||||
// However, if a cache operator is injected at some other place higher in the tree, that cache can
|
||||
// inherit this sampler from the leaf, providing sampling support from the caching layer.
|
||||
// That is why we setup the sampler for a leaf node that does not use sampling.
|
||||
Status PennTreebankNode::SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) {
|
||||
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
|
||||
*sampler = SelectSampler(num_samples_, shuffle_files, num_shards_, shard_id_);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// If a cache has been added into the ascendant tree over this PennTreebank node, then the cache will be executing
|
||||
// a sampler for fetching the data. As such, any options in the PennTreebank node need to be reset to its defaults so
|
||||
// that this PennTreebank node will produce the full set of data into the cache.
|
||||
Status PennTreebankNode::MakeSimpleProducer() {
|
||||
shard_id_ = 0;
|
||||
num_shards_ = 1;
|
||||
shuffle_ = ShuffleMode::kFalse;
|
||||
num_samples_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
std::vector<std::string> PennTreebankNode::WalkAllFiles(const std::string &usage, const std::string &dataset_dir) {
|
||||
std::vector<std::string> penn_treebank_files_list;
|
||||
Path train_prefix("ptb.train.txt");
|
||||
Path test_prefix("ptb.test.txt");
|
||||
Path valid_prefix("ptb.valid.txt");
|
||||
Path dir(dataset_dir);
|
||||
|
||||
if (usage == "train") {
|
||||
Path temp_path = dir / train_prefix;
|
||||
penn_treebank_files_list.push_back(temp_path.ToString());
|
||||
} else if (usage == "test") {
|
||||
Path temp_path = dir / test_prefix;
|
||||
penn_treebank_files_list.push_back(temp_path.ToString());
|
||||
} else if (usage == "valid") {
|
||||
Path temp_path = dir / valid_prefix;
|
||||
penn_treebank_files_list.push_back(temp_path.ToString());
|
||||
} else {
|
||||
Path temp_path = dir / train_prefix;
|
||||
penn_treebank_files_list.push_back(temp_path.ToString());
|
||||
Path temp_path1 = dir / test_prefix;
|
||||
penn_treebank_files_list.push_back(temp_path1.ToString());
|
||||
Path temp_path2 = dir / valid_prefix;
|
||||
penn_treebank_files_list.push_back(temp_path2.ToString());
|
||||
}
|
||||
return penn_treebank_files_list;
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,124 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_PENN_TREEBANK_NODE_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_PENN_TREEBANK_NODE_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
/// \brief class PennTreebankNode.
|
||||
/// \brief Dataset derived class to represent PennTreebank dataset.
|
||||
class PennTreebankNode : public NonMappableSourceNode {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
PennTreebankNode(const std::string &dataset_dir, const std::string &usage, int64_t num_samples, ShuffleMode shuffle,
|
||||
int32_t num_shards, int32_t shard_id, const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Destructor.
|
||||
~PennTreebankNode() = default;
|
||||
|
||||
/// \brief Node name getter.
|
||||
/// \return Name of the current node.
|
||||
std::string Name() const override { return kPennTreebankNode; }
|
||||
|
||||
/// \brief Print the description.
|
||||
/// \param[in] out The output stream to write output to.
|
||||
void Print(std::ostream &out) const override;
|
||||
|
||||
/// \brief Copy the node to a new object.
|
||||
/// \return A shared pointer to the new copy.
|
||||
std::shared_ptr<DatasetNode> Copy() override;
|
||||
|
||||
/// \brief A base class override function to create the required runtime dataset op objects for this class.
|
||||
/// \param[in] node_ops A vector containing shared pointer to the Dataset Ops that this object will create.
|
||||
/// \return Status Status::OK() if build successfully.
|
||||
Status Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) override;
|
||||
|
||||
/// \brief Parameters validation.
|
||||
/// \return Status Status::OK() if all the parameters are valid.
|
||||
Status ValidateParams() override;
|
||||
|
||||
/// \brief Get the shard id of node.
|
||||
/// \param[in] shard_id The shard id.
|
||||
/// \return Status Status::OK() if get shard id successfully.
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize.
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter.
|
||||
/// \param[in] estimate This is only supported by some of the ops and it's used to speed up the process of getting
|
||||
/// dataset size at the expense of accuracy.
|
||||
/// \param[out] dataset_size the size of the dataset.
|
||||
/// \return Status of the function.
|
||||
Status GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) override;
|
||||
|
||||
/// \brief Getter functions.
|
||||
const std::string &DatasetDir() const { return dataset_dir_; }
|
||||
int32_t NumSamples() const { return num_samples_; }
|
||||
int32_t NumShards() const { return num_shards_; }
|
||||
int32_t ShardId() const { return shard_id_; }
|
||||
ShuffleMode Shuffle() const { return shuffle_; }
|
||||
const std::string &Usage() const { return usage_; }
|
||||
|
||||
/// \brief Get the arguments of node
|
||||
/// \param[out] out_json JSON string of all attributes
|
||||
/// \return Status of the function
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
/// \brief PennTreebank by itself is a non-mappable dataset that does not support sampling.
|
||||
/// However, if a cache operator is injected at some other place higher in
|
||||
/// the tree, that cache can inherit this sampler from the leaf, providing
|
||||
/// sampling support from the caching layer. That is why we setup the
|
||||
/// sampler for a leaf node that does not use sampling. Note: This
|
||||
/// function is common among NonMappableSourceNode and should be promoted
|
||||
/// to its parent class.
|
||||
/// \param[in] sampler The sampler to setup.
|
||||
/// \return Status of the function.
|
||||
Status SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) override;
|
||||
|
||||
/// \brief If a cache has been added into the ascendant tree over this PennTreebank node,
|
||||
/// then the cache will be executing a sampler for fetching the data.
|
||||
/// As such, any options in the PennTreebank node need to be reset to its defaults
|
||||
/// so that this PennTreebank node will produce the full set of data into the cache.
|
||||
/// Note: This function is common among NonMappableSourceNode and should be promoted to its
|
||||
/// parent class.
|
||||
/// \return Status of the function.
|
||||
Status MakeSimpleProducer() override;
|
||||
|
||||
/// \brief Generate a list of read file names according to usage.
|
||||
/// \param[in] usage Part of dataset of PennTreebank.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \return std::vector<std::string> A list of read file names.
|
||||
std::vector<std::string> WalkAllFiles(const std::string &usage, const std::string &dataset_dir);
|
||||
|
||||
private:
|
||||
std::string dataset_dir_;
|
||||
std::string usage_;
|
||||
int64_t num_samples_;
|
||||
int32_t num_shards_;
|
||||
int32_t shard_id_;
|
||||
ShuffleMode shuffle_;
|
||||
std::vector<std::string> penn_treebank_files_list_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_PENN_TREEBANK_NODE_H_
|
|
@ -3175,6 +3175,58 @@ inline std::shared_ptr<MnistDataset> MS_API Mnist(const std::string &dataset_dir
|
|||
return std::make_shared<MnistDataset>(StringToChar(dataset_dir), StringToChar(usage), sampler, cache);
|
||||
}
|
||||
|
||||
/// \class PennTreebankDataset
|
||||
/// \brief A source dataset for reading and parsing PennTreebank dataset.
|
||||
class MS_API PennTreebankDataset : public Dataset {
|
||||
public:
|
||||
/// \brief Constructor of PennTreebank Dataset.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage The type of data list txt file to be read, can be "train", "test", 'valid' or "all".
|
||||
/// \param[in] num_samples The number of samples to be included in the dataset.
|
||||
/// \param[in] shuffle The mode for shuffling data every epoch.
|
||||
/// Can be any of:
|
||||
/// ShuffleMode.kFalse - No shuffling is performed.
|
||||
/// ShuffleMode.kFiles - Shuffle files only.
|
||||
/// ShuffleMode.kGlobal - Shuffle both the files and samples.
|
||||
/// \param[in] num_shards Number of shards that the dataset should be divided into.
|
||||
/// \param[in] shard_id The shard ID within num_shards. This argument should be
|
||||
/// specified only when num_shards is also specified.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
PennTreebankDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage, int64_t num_samples,
|
||||
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
|
||||
const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Destructor of PennTreebankDataset.
|
||||
~PennTreebankDataset() = default;
|
||||
};
|
||||
|
||||
/// \brief Function to create a PennTreebank Dataset.
|
||||
/// \note The generated dataset has one column ['text'].
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage One of "all", "train" , 'valid' or "test" (default = "all").
|
||||
/// \param[in] num_samples The number of samples to be included in the dataset
|
||||
/// (Default = 0, means all samples).
|
||||
/// \param[in] shuffle The mode for shuffling data every epoch (Default=ShuffleMode.kGlobal).
|
||||
/// Can be any of:
|
||||
/// ShuffleMode.kFalse - No shuffling is performed.
|
||||
/// ShuffleMode.kFiles - Shuffle files only.
|
||||
/// ShuffleMode.kGlobal - Shuffle both the files and samples.
|
||||
/// \param[in] usage One of "all", "train", "valid" or "test" (default = "all").
|
||||
/// \param[in] num_shards Number of shards that the dataset should be divided into (Default = 1).
|
||||
/// \param[in] shard_id The shard ID within num_shards. This argument should be
|
||||
/// specified only when num_shards is also specified (Default = 0).
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the TextFileDataset.
|
||||
inline std::shared_ptr<PennTreebankDataset> MS_API PennTreebank(const std::string &dataset_dir,
|
||||
const std::string &usage = "all",
|
||||
int64_t num_samples = 0,
|
||||
ShuffleMode shuffle = ShuffleMode::kGlobal,
|
||||
int32_t num_shards = 1, int32_t shard_id = 0,
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<PennTreebankDataset>(StringToChar(dataset_dir), StringToChar(usage), num_samples, shuffle,
|
||||
num_shards, shard_id, cache);
|
||||
}
|
||||
|
||||
/// \class PhotoTourDataset
|
||||
/// \brief A source dataset for reading and parsing PhotoTour dataset.
|
||||
class MS_API PhotoTourDataset : public Dataset {
|
||||
|
|
|
@ -71,7 +71,7 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che
|
|||
check_sbu_dataset, check_qmnist_dataset, check_emnist_dataset, check_fake_image_dataset, check_places365_dataset, \
|
||||
check_photo_tour_dataset, check_ag_news_dataset, check_dbpedia_dataset, check_lj_speech_dataset, \
|
||||
check_yes_no_dataset, check_speech_commands_dataset, check_tedlium_dataset, check_svhn_dataset, \
|
||||
check_stl10_dataset, check_yelp_review_dataset
|
||||
check_stl10_dataset, check_yelp_review_dataset, check_penn_treebank_dataset
|
||||
from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \
|
||||
get_prefetch_size, get_auto_offload
|
||||
from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist
|
||||
|
@ -3953,6 +3953,95 @@ class MnistDataset(MappableDataset):
|
|||
return cde.MnistNode(self.dataset_dir, self.usage, self.sampler)
|
||||
|
||||
|
||||
class PennTreebankDataset(SourceDataset):
|
||||
"""
|
||||
A source dataset that reads and parses PennTreebank datasets.
|
||||
|
||||
The generated dataset has one column :py:obj:`[text]`.
|
||||
The tensor of column :py:obj:`text` is of the string type.
|
||||
|
||||
Args:
|
||||
dataset_dir (str): Path to the root directory that contains the dataset.
|
||||
usage (str, optional): Acceptable usages include `train`, `test`, 'valid' and `all`.
|
||||
'train' will read from 42,068 train samples of string type,
|
||||
'test' will read from 3,370 test samples of string type,
|
||||
'valid' will read from 3,761 test samples of string type,
|
||||
'all' will read from all 49,199 samples of string type (default=None, all samples).
|
||||
num_samples (int, optional): Number of samples (rows) to read (default=None, reads the full dataset).
|
||||
num_parallel_workers (int, optional): Number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch
|
||||
(default=Shuffle.GLOBAL).
|
||||
If shuffle is False, no shuffling will be performed;
|
||||
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL
|
||||
Otherwise, there are two levels of shuffling:
|
||||
|
||||
- Shuffle.GLOBAL: Shuffle both the files and samples.
|
||||
|
||||
- Shuffle.FILES: Shuffle files only.
|
||||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, 'num_samples' reflects the max sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
(default=None, which means no cache is used).
|
||||
|
||||
Examples:
|
||||
>>> penn_treebank_dataset_dir = "path/to/penn_treebank_dataset_directory"
|
||||
>>> dataset = ds.PennTreebankDataset(dataset_dir=penn_treebank_dataset_dir, usage='all')
|
||||
|
||||
About PennTreebank dataset:
|
||||
|
||||
Penn Treebank (PTB) dataset, is widely used in machine learning for NLP (Natural Language Processing)
|
||||
research. Word-level PTB does not contain capital letters, numbers, and punctuations, and the vocabulary
|
||||
is capped at 10k unique words, which is relatively small in comparison to most modern datasets which
|
||||
can result in a larger number of out of vocabulary tokens.
|
||||
|
||||
Here is the original PennTreebank dataset structure.
|
||||
You can unzip the dataset files into this directory structure and read by MindSpore's API.
|
||||
|
||||
.. code-block::
|
||||
.
|
||||
└── PennTreebank_dataset_dir
|
||||
├── ptb.test.txt
|
||||
├── ptb.train.txt
|
||||
└── ptb.valid.txt
|
||||
|
||||
Citation:
|
||||
|
||||
.. code-block::
|
||||
|
||||
@techreport{Santorini1990,
|
||||
added-at = {2014-03-26T23:25:56.000+0100},
|
||||
author = {Santorini, Beatrice},
|
||||
biburl = {https://www.bibsonomy.org/bibtex/234cdf6ddadd89376090e7dada2fc18ec/butonic},
|
||||
file = {:Santorini - Penn Treebank tag definitions.pdf:PDF},
|
||||
institution = {Department of Computer and Information Science, University of Pennsylvania},
|
||||
interhash = {818e72efd9e4b5fae3e51e88848100a0},
|
||||
intrahash = {34cdf6ddadd89376090e7dada2fc18ec},
|
||||
keywords = {dis pos tagging treebank},
|
||||
number = {MS-CIS-90-47},
|
||||
timestamp = {2014-03-26T23:25:56.000+0100},
|
||||
title = {Part-of-speech tagging guidelines for the {P}enn {T}reebank {P}roject},
|
||||
url = {ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz},
|
||||
year = 1990
|
||||
}
|
||||
"""
|
||||
|
||||
@check_penn_treebank_dataset
|
||||
def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL,
|
||||
num_shards=None, shard_id=None, cache=None):
|
||||
super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle,
|
||||
num_shards=num_shards, shard_id=shard_id, cache=cache)
|
||||
self.dataset_dir = dataset_dir
|
||||
self.usage = replace_none(usage, "all")
|
||||
|
||||
def parse(self, children=None):
|
||||
return cde.PennTreebankNode(self.dataset_dir, self.usage, self.num_samples, self.shuffle_flag, self.num_shards,
|
||||
self.shard_id)
|
||||
|
||||
|
||||
class PhotoTourDataset(MappableDataset):
|
||||
"""
|
||||
A source dataset for reading and parsing the PhotoTour dataset.
|
||||
|
|
|
@ -1188,6 +1188,35 @@ def check_textfiledataset(method):
|
|||
return new_method
|
||||
|
||||
|
||||
def check_penn_treebank_dataset(method):
|
||||
"""A wrapper that wraps a parameter checker around the original Dataset(PennTreebankDataset)."""
|
||||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
_, param_dict = parse_user_args(method, *args, **kwargs)
|
||||
|
||||
nreq_param_int = ['num_samples', 'num_parallel_workers', 'num_shards', 'shard_id']
|
||||
|
||||
# check dataset_dir; required argument
|
||||
dataset_dir = param_dict.get('dataset_dir')
|
||||
check_dir(dataset_dir)
|
||||
|
||||
# check usage
|
||||
usage = param_dict.get('usage')
|
||||
if usage is not None:
|
||||
check_valid_str(usage, ["train", "valid", "test", "all"], "usage")
|
||||
|
||||
validate_dataset_param_value(nreq_param_int, param_dict, int)
|
||||
check_sampler_shuffle_shard_options(param_dict)
|
||||
|
||||
cache = param_dict.get('cache')
|
||||
check_cache_option(cache)
|
||||
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_split(method):
|
||||
"""check the input arguments of split."""
|
||||
|
||||
|
|
|
@ -34,6 +34,7 @@ SET(DE_UT_SRCS
|
|||
c_api_dataset_manifest_test.cc
|
||||
c_api_dataset_minddata_test.cc
|
||||
c_api_dataset_ops_test.cc
|
||||
c_api_dataset_penn_treebank_test.cc
|
||||
c_api_dataset_photo_tour_test.cc
|
||||
c_api_dataset_places365_test.cc
|
||||
c_api_dataset_qmnist_test.cc
|
||||
|
|
|
@ -0,0 +1,588 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "common/common.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/include/dataset/datasets.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
|
||||
using mindspore::dataset::ShuffleMode;
|
||||
|
||||
class MindDataTestPipeline : public UT::DatasetOpTesting {
|
||||
protected:
|
||||
};
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: read PennTreebank data and get data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetBasic) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetBasic.";
|
||||
// Test PennTreebank Dataset with single text file and many default inputs
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(987);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("text"), row.end());
|
||||
std::vector<std::string> expected_result = {
|
||||
{" no it was black friday "},
|
||||
{" clash twits poetry formulate flip loyalty splash "},
|
||||
{" you pay less for the supermaket's own brands "},
|
||||
};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto text = row["text"];
|
||||
MS_LOG(INFO) << "Tensor text shape: " << text.Shape();
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
MS_LOG(INFO) << "Text length: " << ss.length() << ", Text: " << ss.substr(0, 50);
|
||||
// Compare against expected result
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i].c_str());
|
||||
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 3 samples
|
||||
EXPECT_EQ(i, 3);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: read PennTreebank data and get data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetBasicWithPipeline) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetBasicWithPipeline.";
|
||||
// Test PennTreebank Dataset with single text file and many default inputs
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(987);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds1 = PennTreebank(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
std::shared_ptr<Dataset> ds2 = PennTreebank(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Repeat operation on ds
|
||||
int32_t repeat_num = 2;
|
||||
ds1 = ds1->Repeat(repeat_num);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
repeat_num = 3;
|
||||
ds2 = ds2->Repeat(repeat_num);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create a Concat operation on the ds
|
||||
ds1 = ds1->Concat({ds2});
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds1->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("text"), row.end());
|
||||
std::vector<std::string> expected_result = {
|
||||
{" no it was black friday "},
|
||||
{" clash twits poetry formulate flip loyalty splash "},
|
||||
{" you pay less for the supermaket's own brands "},
|
||||
};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto text = row["text"];
|
||||
MS_LOG(INFO) << "Tensor text shape: " << text.Shape();
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 15 samples
|
||||
EXPECT_EQ(i, 15);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: read PennTreebank data and get data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankGetters) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankGetters.";
|
||||
// Test PennTreebank Dataset with single text file and many default inputs
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(987);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "test", 2, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::vector<std::string> column_names = {"text"};
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 2);
|
||||
EXPECT_EQ(ds->GetColumnNames(), column_names);
|
||||
|
||||
ds = PennTreebank(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 3);
|
||||
|
||||
std::vector<DataType> types = ToDETypes(ds->GetOutputTypes());
|
||||
std::vector<TensorShape> shapes = ToTensorShapeVec(ds->GetOutputShapes());
|
||||
EXPECT_EQ(types.size(), 1);
|
||||
EXPECT_EQ(types[0].ToString(), "string");
|
||||
EXPECT_EQ(shapes.size(), 1);
|
||||
EXPECT_EQ(shapes[0].ToString(), "<>");
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetFail1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetFail1.";
|
||||
|
||||
// Create a PennTreebank Dataset
|
||||
// with invalid samplers=-1
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "test", -1, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: PennTreebank number of samples cannot be negative
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetFail2) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetFail2.";
|
||||
|
||||
// Attempt to create a PennTreebank Dataset
|
||||
// with wrongful empty dataset_files input
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank("123", "test", 2, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: dataset_dir is not specified
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetFail3) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetFail3.";
|
||||
|
||||
// Create a PennTreebank Dataset
|
||||
// with non-existent dataset_files input
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "asd", 2, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: invalid usage
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetFail4) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetFail4.";
|
||||
|
||||
// Create a PennTreebank Dataset
|
||||
// with empty string dataset_files input
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank("", "test", 2, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: specified dataset_files does not exist
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetFail5) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetFail5.";
|
||||
|
||||
// Create a PennTreebank Dataset
|
||||
// with invalid num_shards=0 value
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "test", 2, ShuffleMode::kFalse, 0);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: Number of shards cannot be <=0
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetFail6) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetFail6.";
|
||||
|
||||
// Create a PennTreebank Dataset
|
||||
// with invalid shard_id=-1 value
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "test", 2, ShuffleMode::kFalse, 1, -1);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: shard_id cannot be negative
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetFail7) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetFail7.";
|
||||
|
||||
// Create a PennTreebank Dataset
|
||||
// with invalid shard_id=2 and num_shards=2 combination
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "test", 2, ShuffleMode::kFalse, 2, 2);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: Cannot have shard_id >= num_shards
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: Testing abnormal inputs.
|
||||
/// Expectation: Exception thrown to be caught.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetShuffleFalse) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetShuffleFalse.";
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(246);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(2);
|
||||
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "all", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("text"), row.end());
|
||||
std::vector<std::string> expected_result = {
|
||||
{" no it was black friday "},
|
||||
{" does the bank charge a fee for setting up the account "},
|
||||
{" clash twits poetry formulate flip loyalty splash "},
|
||||
{" <unk> the wardrobe was very small in our room "},
|
||||
{" you pay less for the supermaket's own brands "},
|
||||
{" black white grapes "},
|
||||
{" just ahead of them there was a huge fissure "},
|
||||
{" <unk> <unk> the proportion of female workers in this company <unk> <unk> "},
|
||||
{" everyone in our football team is fuming "},
|
||||
};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto text = row["text"];
|
||||
MS_LOG(INFO) << "Tensor text shape: " << text.Shape();
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
MS_LOG(INFO) << "Text length: " << ss.length() << ", Text: " << ss.substr(0, 50);
|
||||
// Compare against expected result
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i].c_str());
|
||||
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 9 samples
|
||||
EXPECT_EQ(i, 9);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: read PennTreebank data and get data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetShuffleFilesA) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetShuffleFilesA.";
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(654);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(1);
|
||||
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "all", 0, ShuffleMode::kFiles);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("text"), row.end());
|
||||
std::vector<std::string> expected_result = {
|
||||
{" does the bank charge a fee for setting up the account "},
|
||||
{" <unk> the wardrobe was very small in our room "},
|
||||
{" black white grapes "},
|
||||
{" no it was black friday "},
|
||||
{" clash twits poetry formulate flip loyalty splash "},
|
||||
{" you pay less for the supermaket's own brands "},
|
||||
{" just ahead of them there was a huge fissure "},
|
||||
{" <unk> <unk> the proportion of female workers in this company <unk> <unk> "},
|
||||
{" everyone in our football team is fuming "},
|
||||
};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto text = row["text"];
|
||||
MS_LOG(INFO) << "Tensor text shape: " << text.Shape();
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
MS_LOG(INFO) << "Text length: " << ss.length() << ", Text: " << ss.substr(0, 50);
|
||||
// Compare against expected result
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i].c_str());
|
||||
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 9 samples
|
||||
EXPECT_EQ(i, 9);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: read PennTreebank data and get data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetShuffleFilesB) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetShuffleFilesB.";
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(130);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "all", 0, ShuffleMode::kInfile);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("text"), row.end());
|
||||
std::vector<std::string> expected_result = {
|
||||
{" no it was black friday "},
|
||||
{" does the bank charge a fee for setting up the account "},
|
||||
{" just ahead of them there was a huge fissure "},
|
||||
{" clash twits poetry formulate flip loyalty splash "},
|
||||
{" <unk> the wardrobe was very small in our room "},
|
||||
{" <unk> <unk> the proportion of female workers in this company <unk> <unk> "},
|
||||
{" you pay less for the supermaket's own brands "},
|
||||
{" black white grapes "},
|
||||
{" everyone in our football team is fuming "},
|
||||
};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto text = row["text"];
|
||||
MS_LOG(INFO) << "Tensor text shape: " << text.Shape();
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
MS_LOG(INFO) << "Text length: " << ss.length() << ", Text: " << ss.substr(0, 50);
|
||||
// Compare against expected result
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i].c_str());
|
||||
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 9 samples
|
||||
EXPECT_EQ(i, 9);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test PennTreebank Dataset.
|
||||
/// Description: read PennTreebank data and get data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestPennTreebankDatasetShuffleGlobal) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPennTreebankDatasetShuffleGlobal.";
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(246);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
// Create a TextFile Dataset, with two text files
|
||||
// Note: 1.txt has 3 rows
|
||||
// Note: 2.txt has 2 rows
|
||||
// Set shuffle to global shuffle
|
||||
std::string dataset_dir = datasets_root_path_ + "/testPennTreebank";
|
||||
std::shared_ptr<Dataset> ds = PennTreebank(dataset_dir, "all", 0, ShuffleMode::kGlobal);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("text"), row.end());
|
||||
std::vector<std::string> expected_result = {
|
||||
{" everyone in our football team is fuming "},
|
||||
{" does the bank charge a fee for setting up the account "},
|
||||
{" clash twits poetry formulate flip loyalty splash "},
|
||||
{" no it was black friday "},
|
||||
{" just ahead of them there was a huge fissure "},
|
||||
{" <unk> <unk> the proportion of female workers in this company <unk> <unk> "},
|
||||
{" you pay less for the supermaket's own brands "},
|
||||
{" <unk> the wardrobe was very small in our room "},
|
||||
{" black white grapes "},
|
||||
};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto text = row["text"];
|
||||
MS_LOG(INFO) << "Tensor text shape: " << text.Shape();
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
MS_LOG(INFO) << "Text length: " << ss.length() << ", Text: " << ss.substr(0, 50);
|
||||
// Compare against expected result
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i].c_str());
|
||||
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 9 samples
|
||||
EXPECT_EQ(i, 9);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
no it was black friday
|
||||
clash twits poetry formulate flip loyalty splash
|
||||
you pay less for the supermaket's own brands
|
|
@ -0,0 +1,3 @@
|
|||
does the bank charge a fee for setting up the account
|
||||
<unk> the wardrobe was very small in our room
|
||||
black white grapes
|
|
@ -0,0 +1,3 @@
|
|||
just ahead of them there was a huge fissure
|
||||
<unk> <unk> the proportion of female workers in this company <unk> <unk>
|
||||
everyone in our football team is fuming
|
|
@ -0,0 +1,385 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import pytest
|
||||
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
from util import config_get_set_num_parallel_workers, config_get_set_seed
|
||||
|
||||
FILE_DIR = '../data/dataset/testPennTreebank'
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_one_file():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='test')
|
||||
count = 0
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
logger.info("{}".format(i["text"]))
|
||||
count += 1
|
||||
assert count == 3
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_train():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='train')
|
||||
count = 0
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
logger.info("{}".format(i["text"]))
|
||||
count += 1
|
||||
assert count == 3
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_valid():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='valid')
|
||||
count = 0
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
logger.info("{}".format(i["text"]))
|
||||
count += 1
|
||||
assert count == 3
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_all_file():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all')
|
||||
count = 0
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
logger.info("{}".format(i["text"]))
|
||||
count += 1
|
||||
assert count == 9
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_num_samples_none():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data with no num_samples input.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
# Do not provide a num_samples argument, so it would be None by default
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all')
|
||||
count = 0
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
logger.info("{}".format(i["text"]))
|
||||
count += 1
|
||||
assert count == 9
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_shuffle_false4():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file with shulle is false.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||
original_seed = config_get_set_seed(987)
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', shuffle=False)
|
||||
count = 0
|
||||
line = [" no it was black friday ",
|
||||
" does the bank charge a fee for setting up the account ",
|
||||
" just ahead of them there was a huge fissure ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" <unk> the wardrobe was very small in our room ",
|
||||
" <unk> <unk> the proportion of female workers in this company <unk> <unk> ",
|
||||
" you pay less for the supermaket's own brands ",
|
||||
" black white grapes ",
|
||||
" everyone in our football team is fuming "]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
strs = i["text"].item().decode("utf8")
|
||||
assert strs == line[count]
|
||||
count += 1
|
||||
assert count == 9
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_shuffle_false1():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file with shulle is false.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
original_seed = config_get_set_seed(987)
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', shuffle=False)
|
||||
count = 0
|
||||
line = [" no it was black friday ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" you pay less for the supermaket's own brands ",
|
||||
" does the bank charge a fee for setting up the account ",
|
||||
" <unk> the wardrobe was very small in our room ",
|
||||
" black white grapes ",
|
||||
" just ahead of them there was a huge fissure ",
|
||||
" <unk> <unk> the proportion of female workers in this company <unk> <unk> ",
|
||||
" everyone in our football team is fuming "]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
strs = i["text"].item().decode("utf8")
|
||||
assert strs == line[count]
|
||||
count += 1
|
||||
assert count == 9
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_shuffle_files4():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file with shulle is files.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||
original_seed = config_get_set_seed(135)
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', shuffle=ds.Shuffle.FILES)
|
||||
count = 0
|
||||
line = [" just ahead of them there was a huge fissure ",
|
||||
" does the bank charge a fee for setting up the account ",
|
||||
" no it was black friday ",
|
||||
" <unk> <unk> the proportion of female workers in this company <unk> <unk> ",
|
||||
" <unk> the wardrobe was very small in our room ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" everyone in our football team is fuming ",
|
||||
" black white grapes ",
|
||||
" you pay less for the supermaket's own brands "]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
strs = i["text"].item().decode("utf8")
|
||||
assert strs == line[count]
|
||||
count += 1
|
||||
assert count == 9
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_shuffle_files1():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file with shulle is files.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
original_seed = config_get_set_seed(135)
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', shuffle=ds.Shuffle.FILES)
|
||||
count = 0
|
||||
line = [" just ahead of them there was a huge fissure ",
|
||||
" <unk> <unk> the proportion of female workers in this company <unk> <unk> ",
|
||||
" everyone in our football team is fuming ",
|
||||
" does the bank charge a fee for setting up the account ",
|
||||
" <unk> the wardrobe was very small in our room ",
|
||||
" black white grapes ",
|
||||
" no it was black friday ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" you pay less for the supermaket's own brands "]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
strs = i["text"].item().decode("utf8")
|
||||
assert strs == line[count]
|
||||
count += 1
|
||||
assert count == 9
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_shuffle_global4():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file with shulle is global.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||
original_seed = config_get_set_seed(246)
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', shuffle=ds.Shuffle.GLOBAL)
|
||||
count = 0
|
||||
line = [" everyone in our football team is fuming ",
|
||||
" does the bank charge a fee for setting up the account ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" no it was black friday ",
|
||||
" just ahead of them there was a huge fissure ",
|
||||
" <unk> <unk> the proportion of female workers in this company <unk> <unk> ",
|
||||
" you pay less for the supermaket's own brands ",
|
||||
" <unk> the wardrobe was very small in our room ",
|
||||
" black white grapes "]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
strs = i["text"].item().decode("utf8")
|
||||
assert strs == line[count]
|
||||
count += 1
|
||||
assert count == 9
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_shuffle_global1():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file with shulle is global.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
original_seed = config_get_set_seed(246)
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', shuffle=ds.Shuffle.GLOBAL)
|
||||
count = 0
|
||||
line = [" everyone in our football team is fuming ",
|
||||
" does the bank charge a fee for setting up the account ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" <unk> the wardrobe was very small in our room ",
|
||||
" black white grapes ",
|
||||
" you pay less for the supermaket's own brands ",
|
||||
" <unk> <unk> the proportion of female workers in this company <unk> <unk> ",
|
||||
" no it was black friday ",
|
||||
" just ahead of them there was a huge fissure "]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
strs = i["text"].item().decode("utf8")
|
||||
assert strs == line[count]
|
||||
count += 1
|
||||
assert count == 9
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_num_samples():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: Test num_samples.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', num_samples=2)
|
||||
count = 0
|
||||
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
count += 1
|
||||
assert count == 2
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_distribution():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: read data from a single file.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='all', num_shards=2, shard_id=1)
|
||||
count = 0
|
||||
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
count += 1
|
||||
assert count == 5
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_repeat():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: Test repeat.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='test', shuffle=False)
|
||||
data = data.repeat(3)
|
||||
count = 0
|
||||
line = [" no it was black friday ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" you pay less for the supermaket's own brands ",
|
||||
" no it was black friday ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" you pay less for the supermaket's own brands ",
|
||||
" no it was black friday ",
|
||||
" clash twits poetry formulate flip loyalty splash ",
|
||||
" you pay less for the supermaket's own brands ",]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
strs = i["text"].item().decode("utf8")
|
||||
assert strs == line[count]
|
||||
count += 1
|
||||
assert count == 9
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_get_datasetsize():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: Test get_datasetsize.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='test')
|
||||
size = data.get_dataset_size()
|
||||
assert size == 3
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_to_device():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: Test to_device.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.PennTreebankDataset(FILE_DIR, usage='test')
|
||||
data = data.to_device()
|
||||
data.send()
|
||||
|
||||
|
||||
def test_penn_treebank_dataset_exceptions():
|
||||
"""
|
||||
Feature: Test PennTreebank Dataset.
|
||||
Description: Test exceptions.
|
||||
Expectation: Exception thrown to be caught
|
||||
"""
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.PennTreebankDataset(FILE_DIR, usage='test', num_samples=-1)
|
||||
assert "num_samples exceeds the boundary" in str(error_info.value)
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.PennTreebankDataset("does/not/exist/no.txt")
|
||||
assert str(error_info.value)
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.PennTreebankDataset("")
|
||||
assert str(error_info.value)
|
||||
def exception_func(item):
|
||||
raise Exception("Error occur!")
|
||||
with pytest.raises(RuntimeError) as error_info:
|
||||
data = ds.PennTreebankDataset(FILE_DIR)
|
||||
data = data.map(operations=exception_func, input_columns=["text"], num_parallel_workers=1)
|
||||
for _ in data.__iter__():
|
||||
pass
|
||||
assert "map operation: [PyFunc] failed. The corresponding data files" in str(error_info.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_penn_treebank_dataset_one_file()
|
||||
test_penn_treebank_dataset_train()
|
||||
test_penn_treebank_dataset_valid()
|
||||
test_penn_treebank_dataset_all_file()
|
||||
test_penn_treebank_dataset_num_samples_none()
|
||||
test_penn_treebank_dataset_shuffle_false4()
|
||||
test_penn_treebank_dataset_shuffle_false1()
|
||||
test_penn_treebank_dataset_shuffle_files4()
|
||||
test_penn_treebank_dataset_shuffle_files1()
|
||||
test_penn_treebank_dataset_shuffle_global4()
|
||||
test_penn_treebank_dataset_shuffle_global1()
|
||||
test_penn_treebank_dataset_num_samples()
|
||||
test_penn_treebank_dataset_distribution()
|
||||
test_penn_treebank_dataset_repeat()
|
||||
test_penn_treebank_dataset_get_datasetsize()
|
||||
test_penn_treebank_dataset_to_device()
|
||||
test_penn_treebank_dataset_exceptions()
|
||||
|
Loading…
Reference in New Issue