!33826 [DOC]Fix prob programming doc

Merge pull request !33826 from zichun_ye/pp_doc
This commit is contained in:
i-robot 2022-05-05 07:50:24 +00:00 committed by Gitee
commit 25c93387d0
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
14 changed files with 18 additions and 22 deletions

View File

@ -52,10 +52,6 @@ mindspore.nn.probability.bijector.Invert
Tensor基础Bijector的输出随机变量的值。
**返回:**
Tensor输出随机变量的值。
.. py:method:: inverse_log_jacobian(y)
计算基础Bijector的正映射导数的对数:math:`Y = \log dg(x) / dx`

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Bernoulli
================================================
.. py:class:: mindspore.nn.probability.distribution.Bernoulli(probs=None, seed=None, dtype=mstype.int32, name='Bernoulli')
.. py:class:: mindspore.nn.probability.distribution.Bernoulli(probs=None, seed=None, dtype=mindspore.int32, name='Bernoulli')
伯努利分布Bernoulli Distribution
离散随机分布,取值范围为 :math:`\{0, 1\}` ,概率质量函数为 :math:`P(X = 0) = p, P(X = 1) = 1-p`

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Beta
================================================
.. py:class:: mindspore.nn.probability.distribution.Beta(concentration1=None, concentration0=None, seed=None, dtype=mstype.float32, name='Beta')
.. py:class:: mindspore.nn.probability.distribution.Beta(concentration1=None, concentration0=None, seed=None, dtype=mindspore.float32, name='Beta')
Beta 分布Beta Distribution
连续随机分布,取值范围为 :math:`[0, 1]` ,概率密度函数为
@ -13,8 +13,8 @@ mindspore.nn.probability.distribution.Beta
**参数:**
- **concentration1** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的alpha。
- **concentration0** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的beta。
- **concentration1** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的alpha。默认值None。
- **concentration0** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的beta。默认值None。
- **seed** (int) - 采样时使用的种子。如果为None则使用全局种子。默认值None。
- **dtype** (mindspore.dtype) - 采样结果的数据类型。默认值mindspore.float32。
- **name** (str) - 分布的名称。默认值:'Beta'。

View File

@ -1,14 +1,14 @@
mindspore.nn.probability.distribution.Categorical
==================================================
.. py:class:: mindspore.nn.probability.distribution.Categorical(probs=None, seed=None, dtype=mstype.int32, name='Categorical')
.. py:class:: mindspore.nn.probability.distribution.Categorical(probs=None, seed=None, dtype=mindspore.int32, name='Categorical')
分类分布。
离散随机分布,取值范围为 :math:`\{1, 2, ..., k\}` ,概率质量函数为 :math:`P(X = i) = p_i, i = 1, ..., k`
**参数:**
- **probs** (Tensorlist, numpy.ndarray) - 事件概率
- **probs** (Tensor, list, numpy.ndarray) - 事件概率。默认值None
- **seed** (int) - 采样时使用的种子。如果为None则使用全局种子。默认值None。
- **dtype** (mindspore.dtype) - 事件样例的类型。默认值mindspore.int32.
- **name** (str) - 分布的名称。默认值Categorical。

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Cauchy
================================================
.. py:class:: mindspore.nn.probability.distribution.Cauchy(loc=None, scale=None, seed=None, dtype=mstype.float32, name='Cauchy')
.. py:class:: mindspore.nn.probability.distribution.Cauchy(loc=None, scale=None, seed=None, dtype=mindspore.float32, name='Cauchy')
柯西分布Cauchy distribution
连续随机分布,取值范围为所有实数,概率密度函数为
@ -13,8 +13,8 @@ mindspore.nn.probability.distribution.Cauchy
**参数:**
- **loc** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的位置。
- **scale** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的比例。
- **loc** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的位置。默认值None。
- **scale** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的比例。默认值None。
- **seed** (int) - 采样时使用的种子。如果为None则使用全局种子。默认值None。
- **dtype** (mindspore.dtype) - 事件样例的类型。默认值mindspore.float32。
- **name** (str) - 分布的名称。默认值:'Cauchy'。

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Exponential
===================================================
.. py:class:: mindspore.nn.probability.distribution.Exponential(rate=None, seed=None, dtype=mstype.float32, name='Exponential')
.. py:class:: mindspore.nn.probability.distribution.Exponential(rate=None, seed=None, dtype=mindspore.float32, name='Exponential')
指数分布Exponential Distribution
连续随机分布,取值范围为所有实数,概率密度函数为

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Gamma
================================================
.. py:class:: mindspore.nn.probability.distribution.Gamma(concentration=None, rate=None, seed=None, dtype=mstype.float32, name='Gamma')
.. py:class:: mindspore.nn.probability.distribution.Gamma(concentration=None, rate=None, seed=None, dtype=mindspore.float32, name='Gamma')
伽马分布Gamma distribution
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Geometric
================================================
.. py:class:: mindspore.nn.probability.distribution.Geometric(probs=None, seed=None, dtype=mstype.int32, name='Geometric')
.. py:class:: mindspore.nn.probability.distribution.Geometric(probs=None, seed=None, dtype=mindspore.int32, name='Geometric')
几何分布Geometric Distribution

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Gumbel
================================================
.. py:class:: mindspore.nn.probability.distribution.Gumbel(loc, scale, seed=0, dtype=mstype.float32, name='Gumbel')
.. py:class:: mindspore.nn.probability.distribution.Gumbel(loc, scale, seed=0, dtype=mindspore.float32, name='Gumbel')
Gumbel分布Gumbel distribution
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.LogNormal
================================================
.. py:class:: mindspore.nn.probability.distribution.LogNormal(loc=None, scale=None, seed=0, dtype=mstype.float32, name='LogNormal')
.. py:class:: mindspore.nn.probability.distribution.LogNormal(loc=None, scale=None, seed=0, dtype=mindspore.float32, name='LogNormal')
对数正态分布LogNormal distribution
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Logistic
================================================
.. py:class:: mindspore.nn.probability.distribution.Logistic(loc=None, scale=None, seed=None, dtype=mstype.float32, name='Logistic')
.. py:class:: mindspore.nn.probability.distribution.Logistic(loc=None, scale=None, seed=None, dtype=mindspore.float32, name='Logistic')
Logistic分布Logistic distribution
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Normal
================================================
.. py:class:: mindspore.nn.probability.distribution.Normal(mean=None, sd=None, seed=None, dtype=mstype.float32, name='Normal')
.. py:class:: mindspore.nn.probability.distribution.Normal(mean=None, sd=None, seed=None, dtype=mindspore.float32, name='Normal')
正态分布Normal distribution
连续随机分布,取值范围为 :math:`(-\inf, \inf)` ,概率密度函数为

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Poisson
================================================
.. py:class:: mindspore.nn.probability.distribution.Poisson(rate=None, seed=None, dtype=mstype.float32, name='Poisson')
.. py:class:: mindspore.nn.probability.distribution.Poisson(rate=None, seed=None, dtype=mindspore.float32, name='Poisson')
泊松分布Poisson Distribution
离散随机分布,取值范围为正自然数集,概率质量函数为

View File

@ -1,7 +1,7 @@
mindspore.nn.probability.distribution.Uniform
================================================
.. py:class:: mindspore.nn.probability.distribution.Uniform(low=None, high=None, seed=None, dtype=mstype.float32, name='Uniform')
.. py:class:: mindspore.nn.probability.distribution.Uniform(low=None, high=None, seed=None, dtype=mindspore.float32, name='Uniform')
均匀分布Uniform Distribution
连续随机分布,取值范围为 :math:`[a, b]` ,概率密度函数为