!33826 [DOC]Fix prob programming doc
Merge pull request !33826 from zichun_ye/pp_doc
This commit is contained in:
commit
25c93387d0
|
@ -52,10 +52,6 @@ mindspore.nn.probability.bijector.Invert
|
|||
|
||||
Tensor,基础Bijector的输出随机变量的值。
|
||||
|
||||
**返回:**
|
||||
|
||||
Tensor,输出随机变量的值。
|
||||
|
||||
.. py:method:: inverse_log_jacobian(y)
|
||||
|
||||
计算基础Bijector的正映射导数的对数,即 :math:`Y = \log dg(x) / dx` 。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Bernoulli
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Bernoulli(probs=None, seed=None, dtype=mstype.int32, name='Bernoulli')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Bernoulli(probs=None, seed=None, dtype=mindspore.int32, name='Bernoulli')
|
||||
|
||||
伯努利分布(Bernoulli Distribution)。
|
||||
离散随机分布,取值范围为 :math:`\{0, 1\}` ,概率质量函数为 :math:`P(X = 0) = p, P(X = 1) = 1-p`。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Beta
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Beta(concentration1=None, concentration0=None, seed=None, dtype=mstype.float32, name='Beta')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Beta(concentration1=None, concentration0=None, seed=None, dtype=mindspore.float32, name='Beta')
|
||||
|
||||
Beta 分布(Beta Distribution)。
|
||||
连续随机分布,取值范围为 :math:`[0, 1]` ,概率密度函数为
|
||||
|
@ -13,8 +13,8 @@ mindspore.nn.probability.distribution.Beta
|
|||
|
||||
**参数:**
|
||||
|
||||
- **concentration1** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的alpha。
|
||||
- **concentration0** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的beta。
|
||||
- **concentration1** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的alpha。默认值:None。
|
||||
- **concentration0** (int, float, list, numpy.ndarray, Tensor) - Beta 分布的beta。默认值:None。
|
||||
- **seed** (int) - 采样时使用的种子。如果为None,则使用全局种子。默认值:None。
|
||||
- **dtype** (mindspore.dtype) - 采样结果的数据类型。默认值:mindspore.float32。
|
||||
- **name** (str) - 分布的名称。默认值:'Beta'。
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
mindspore.nn.probability.distribution.Categorical
|
||||
==================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Categorical(probs=None, seed=None, dtype=mstype.int32, name='Categorical')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Categorical(probs=None, seed=None, dtype=mindspore.int32, name='Categorical')
|
||||
|
||||
分类分布。
|
||||
离散随机分布,取值范围为 :math:`\{1, 2, ..., k\}` ,概率质量函数为 :math:`P(X = i) = p_i, i = 1, ..., k`。
|
||||
|
||||
**参数:**
|
||||
|
||||
- **probs** (Tensor,list, numpy.ndarray) - 事件概率。
|
||||
- **probs** (Tensor, list, numpy.ndarray) - 事件概率。默认值:None。
|
||||
- **seed** (int) - 采样时使用的种子。如果为None,则使用全局种子。默认值:None。
|
||||
- **dtype** (mindspore.dtype) - 事件样例的类型。默认值:mindspore.int32.
|
||||
- **name** (str) - 分布的名称。默认值:Categorical。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Cauchy
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Cauchy(loc=None, scale=None, seed=None, dtype=mstype.float32, name='Cauchy')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Cauchy(loc=None, scale=None, seed=None, dtype=mindspore.float32, name='Cauchy')
|
||||
|
||||
柯西分布(Cauchy distribution)。
|
||||
连续随机分布,取值范围为所有实数,概率密度函数为
|
||||
|
@ -13,8 +13,8 @@ mindspore.nn.probability.distribution.Cauchy
|
|||
|
||||
**参数:**
|
||||
|
||||
- **loc** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的位置。
|
||||
- **scale** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的比例。
|
||||
- **loc** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的位置。默认值:None。
|
||||
- **scale** (int, float, list, numpy.ndarray, Tensor) - 柯西分布的比例。默认值:None。
|
||||
- **seed** (int) - 采样时使用的种子。如果为None,则使用全局种子。默认值:None。
|
||||
- **dtype** (mindspore.dtype) - 事件样例的类型。默认值:mindspore.float32。
|
||||
- **name** (str) - 分布的名称。默认值:'Cauchy'。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Exponential
|
||||
===================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Exponential(rate=None, seed=None, dtype=mstype.float32, name='Exponential')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Exponential(rate=None, seed=None, dtype=mindspore.float32, name='Exponential')
|
||||
|
||||
指数分布(Exponential Distribution)。
|
||||
连续随机分布,取值范围为所有实数,概率密度函数为
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Gamma
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Gamma(concentration=None, rate=None, seed=None, dtype=mstype.float32, name='Gamma')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Gamma(concentration=None, rate=None, seed=None, dtype=mindspore.float32, name='Gamma')
|
||||
|
||||
伽马分布(Gamma distribution)。
|
||||
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Geometric
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Geometric(probs=None, seed=None, dtype=mstype.int32, name='Geometric')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Geometric(probs=None, seed=None, dtype=mindspore.int32, name='Geometric')
|
||||
|
||||
几何分布(Geometric Distribution)。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Gumbel
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Gumbel(loc, scale, seed=0, dtype=mstype.float32, name='Gumbel')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Gumbel(loc, scale, seed=0, dtype=mindspore.float32, name='Gumbel')
|
||||
|
||||
Gumbel分布(Gumbel distribution)。
|
||||
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.LogNormal
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.LogNormal(loc=None, scale=None, seed=0, dtype=mstype.float32, name='LogNormal')
|
||||
.. py:class:: mindspore.nn.probability.distribution.LogNormal(loc=None, scale=None, seed=0, dtype=mindspore.float32, name='LogNormal')
|
||||
|
||||
对数正态分布(LogNormal distribution)。
|
||||
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Logistic
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Logistic(loc=None, scale=None, seed=None, dtype=mstype.float32, name='Logistic')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Logistic(loc=None, scale=None, seed=None, dtype=mindspore.float32, name='Logistic')
|
||||
|
||||
Logistic分布(Logistic distribution)。
|
||||
连续随机分布,取值范围为 :math:`(0, \inf)` ,概率密度函数为
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Normal
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Normal(mean=None, sd=None, seed=None, dtype=mstype.float32, name='Normal')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Normal(mean=None, sd=None, seed=None, dtype=mindspore.float32, name='Normal')
|
||||
|
||||
正态分布(Normal distribution)。
|
||||
连续随机分布,取值范围为 :math:`(-\inf, \inf)` ,概率密度函数为
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Poisson
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Poisson(rate=None, seed=None, dtype=mstype.float32, name='Poisson')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Poisson(rate=None, seed=None, dtype=mindspore.float32, name='Poisson')
|
||||
|
||||
泊松分布(Poisson Distribution)。
|
||||
离散随机分布,取值范围为正自然数集,概率质量函数为
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.probability.distribution.Uniform
|
||||
================================================
|
||||
|
||||
.. py:class:: mindspore.nn.probability.distribution.Uniform(low=None, high=None, seed=None, dtype=mstype.float32, name='Uniform')
|
||||
.. py:class:: mindspore.nn.probability.distribution.Uniform(low=None, high=None, seed=None, dtype=mindspore.float32, name='Uniform')
|
||||
|
||||
均匀分布(Uniform Distribution)。
|
||||
连续随机分布,取值范围为 :math:`[a, b]` ,概率密度函数为
|
||||
|
|
Loading…
Reference in New Issue