add loss monitor to lenet
This commit is contained in:
parent
f65586cefa
commit
25969b5d8f
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
"""LossMonitor Callback class."""
|
||||
|
||||
import time
|
||||
import numpy as np
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
||||
|
@ -32,62 +31,32 @@ class LossMonitor(Callback):
|
|||
|
||||
Args:
|
||||
per_print_times (int): Print loss every times. Default: 1.
|
||||
lr_init (numpy array): train learning rate. Default: None.
|
||||
|
||||
Raises:
|
||||
ValueError: If print_step is not int or less than zero.
|
||||
|
||||
Examples:
|
||||
>>> LossMonitor(100, lr_init=Tensor([0.05]*100).asnumpy())
|
||||
"""
|
||||
|
||||
def __init__(self, per_print_times=1, lr_init=None):
|
||||
def __init__(self, per_print_times=1):
|
||||
super(LossMonitor, self).__init__()
|
||||
if not isinstance(per_print_times, int) or per_print_times < 0:
|
||||
raise ValueError("print_step must be int and >= 0.")
|
||||
self._per_print_times = per_print_times
|
||||
self.lr_init = lr_init
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.losses = []
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
||||
print("Epoch time: {:5.3f}, per step time: {:5.3f}, "
|
||||
"avg loss: {:5.3f}".format(epoch_mseconds,
|
||||
per_step_mseconds,
|
||||
np.mean(self.losses)))
|
||||
print("*" * 60)
|
||||
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
step_loss = cb_params.net_outputs
|
||||
loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
||||
step_loss = step_loss[0]
|
||||
if isinstance(step_loss, Tensor):
|
||||
step_loss = np.mean(step_loss.asnumpy())
|
||||
if isinstance(loss, (tuple, list)):
|
||||
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
|
||||
loss = loss[0]
|
||||
|
||||
self.losses.append(step_loss)
|
||||
cur_step_in_epoch = int((cb_params.cur_step_num - 1) % cb_params.batch_num) + 1
|
||||
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
|
||||
loss = np.mean(loss.asnumpy())
|
||||
|
||||
if isinstance(step_loss, float) and (np.isnan(step_loss) or np.isinf(step_loss)):
|
||||
raise ValueError("Epoch: [{:3d}/{:3d}], step: [{:5d}/{:5d}]. "
|
||||
"Invalid loss, terminating training.".format(
|
||||
cb_params.cur_epoch_num - 1, cb_params.epoch_num,
|
||||
cur_step_in_epoch, cb_params.batch_num))
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
|
||||
|
||||
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
|
||||
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format(
|
||||
cb_params.cur_epoch_num, cur_step_in_epoch))
|
||||
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
|
||||
print("Epoch: [{:3d}/{:3d}], step: [{:5d}/{:5d}], "
|
||||
"loss: [{:5.4f}], avg los: [{:5.4f}], time: [{:5.4f}ms]".format(
|
||||
cb_params.cur_epoch_num, cb_params.epoch_num,
|
||||
cur_step_in_epoch, int(cb_params.batch_num),
|
||||
step_loss, np.mean(self.losses),
|
||||
step_mseconds), flush=True)
|
||||
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss), flush=True)
|
||||
|
|
|
@ -0,0 +1,92 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""LossMonitor Callback class."""
|
||||
|
||||
import time
|
||||
import numpy as np
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.train.callback import Callback
|
||||
|
||||
|
||||
class LossMonitor(Callback):
|
||||
"""
|
||||
Monitor the loss in training.
|
||||
|
||||
If the loss is NAN or INF, it will terminate training.
|
||||
|
||||
Note:
|
||||
If per_print_times is 0 do not print loss.
|
||||
|
||||
Args:
|
||||
per_print_times (int): Print loss every times. Default: 1.
|
||||
lr_init (numpy array): train learning rate. Default: None.
|
||||
|
||||
Raises:
|
||||
ValueError: If print_step is not int or less than zero.
|
||||
|
||||
Examples:
|
||||
>>> LossMonitor(100, lr_init=Tensor([0.05]*100).asnumpy())
|
||||
"""
|
||||
|
||||
def __init__(self, per_print_times=1, lr_init=None):
|
||||
super(LossMonitor, self).__init__()
|
||||
if not isinstance(per_print_times, int) or per_print_times < 0:
|
||||
raise ValueError("print_step must be int and >= 0.")
|
||||
self._per_print_times = per_print_times
|
||||
self.lr_init = lr_init
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.losses = []
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
||||
print("Epoch time: {:5.3f}, per step time: {:5.3f}, "
|
||||
"avg loss: {:5.3f}".format(epoch_mseconds,
|
||||
per_step_mseconds,
|
||||
np.mean(self.losses)))
|
||||
print("*" * 60)
|
||||
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
step_loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
||||
step_loss = step_loss[0]
|
||||
if isinstance(step_loss, Tensor):
|
||||
step_loss = np.mean(step_loss.asnumpy())
|
||||
|
||||
self.losses.append(step_loss)
|
||||
cur_step_in_epoch = int((cb_params.cur_step_num - 1) % cb_params.batch_num) + 1
|
||||
|
||||
if isinstance(step_loss, float) and (np.isnan(step_loss) or np.isinf(step_loss)):
|
||||
raise ValueError("Epoch: [{:3d}/{:3d}], step: [{:5d}/{:5d}]. "
|
||||
"Invalid loss, terminating training.".format(
|
||||
cb_params.cur_epoch_num - 1, cb_params.epoch_num,
|
||||
cur_step_in_epoch, cb_params.batch_num))
|
||||
|
||||
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
|
||||
print("Epoch: [{:3d}/{:3d}], step: [{:5d}/{:5d}], "
|
||||
"loss: [{:5.4f}], avg loss: [{:5.4f}], time: [{:5.4f}ms]".format(
|
||||
cb_params.cur_epoch_num, cb_params.epoch_num,
|
||||
cur_step_in_epoch, int(cb_params.batch_num),
|
||||
step_loss, np.mean(self.losses),
|
||||
step_mseconds), flush=True)
|
|
@ -22,12 +22,13 @@ import os
|
|||
import argparse
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
from mindspore.train import Model
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from src.dataset import create_dataset
|
||||
from src.config import mnist_cfg as cfg
|
||||
from src.lenet_fusion import LeNet5 as LeNet5Fusion
|
||||
from src.loss_monitor import LossMonitor
|
||||
|
||||
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
|
||||
parser.add_argument('--device_target', type=str, default="Ascend",
|
||||
|
|
|
@ -23,13 +23,14 @@ import argparse
|
|||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
from mindspore.train import Model
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.train.quant import quant
|
||||
from src.dataset import create_dataset
|
||||
from src.config import mnist_cfg as cfg
|
||||
from src.lenet_fusion import LeNet5 as LeNet5Fusion
|
||||
from src.loss_monitor import LossMonitor
|
||||
|
||||
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
|
||||
parser.add_argument('--device_target', type=str, default="Ascend",
|
||||
|
|
Loading…
Reference in New Issue