!28385 [MS][LITE] fix java api issue
Merge pull request !28385 from zhengjun10/fix
This commit is contained in:
commit
25233628e6
|
@ -25,7 +25,7 @@ from src.network.densenet import DenseNet121
|
|||
#pylint: disable=wrong-import-position
|
||||
sys.path.append(os.environ['CLOUD_MODEL_ZOO'] + 'official/cv/densenet121/')
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = DenseNet121(num_classes=10)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = effnet(num_classes=10)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
|
|
|
@ -24,7 +24,7 @@ from mindspore import context, Tensor, nn
|
|||
from mindspore.train.serialization import export, load_checkpoint
|
||||
from mindspore.common.parameter import ParameterTuple
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
|
||||
class TransferNet(nn.Cell):
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = GoogleNet(num_classes=10)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = LeNet5()
|
||||
loss_fn = nn.MSELoss()
|
||||
|
|
|
@ -21,7 +21,7 @@ from mini_alexnet import AlexNet
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
# Mini alexnet is designed for MNIST data
|
||||
batch = 2
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = MobileNetV1(10)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
batch = 8
|
||||
|
||||
backbone_net = MobileNetV2Backbone()
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = mobilenet_v3_small(num_classes=10)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False, reduction='mean')
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = NiN(num_classes=10)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
batch = 4
|
||||
|
||||
n = resnet50(class_num=10)
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
n = ShuffleNetV2(n_class=10)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
|
|
|
@ -147,7 +147,7 @@ class BertTrainCell(M.nn.Cell):
|
|||
return F.depend(loss, succ)
|
||||
|
||||
|
||||
M.context.set_context(mode=M.context.PYNATIVE_MODE,
|
||||
M.context.set_context(mode=M.context.GRAPH_MODE,
|
||||
device_target="CPU", save_graphs=False)
|
||||
|
||||
# get epoch number
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
batch = 2
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import context, Tensor, nn
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
||||
|
||||
|
||||
n = Xception(num_classes=1000)
|
||||
|
|
|
@ -25,7 +25,7 @@ from train_utils import train_wrap
|
|||
|
||||
n = LeNet5()
|
||||
n.set_train()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU", save_graphs=False)
|
||||
|
||||
BATCH_SIZE = int(sys.argv[1])
|
||||
x = Tensor(np.ones((BATCH_SIZE, 1, 32, 32)), mstype.float32)
|
||||
|
|
|
@ -12,9 +12,9 @@ if [[ -z ${EXPORT} ]]; then
|
|||
fi
|
||||
fi
|
||||
|
||||
|
||||
CONVERTER="../../../build/tools/converter/converter_lite"
|
||||
if [ ! -f "$CONVERTER" ]; then
|
||||
$CONVERTER &> /dev/null
|
||||
if [ "$?" -ne 0 ]; then
|
||||
if ! command -v converter_lite &> /dev/null
|
||||
then
|
||||
tar -xzf ../../../../../output/mindspore-lite-*-linux-x64.tar.gz --strip-components 4 --wildcards --no-anchored converter_lite *so.* *.so
|
||||
|
|
|
@ -23,7 +23,7 @@ from train_utils import train_wrap
|
|||
|
||||
n = LeNet5()
|
||||
n.set_train()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU", save_graphs=False)
|
||||
|
||||
BATCH_SIZE = 4
|
||||
x = Tensor(np.ones((BATCH_SIZE, 1, 32, 32)), mstype.float32)
|
||||
|
|
|
@ -16,10 +16,11 @@ else
|
|||
fi
|
||||
|
||||
CONVERTER="../../../build/tools/converter/converter_lite"
|
||||
if [ ! -f "$CONVERTER" ]; then
|
||||
$CONVERTER &> /dev/null
|
||||
if [ "$?" -ne 0 ]; then
|
||||
if ! command -v converter_lite &> /dev/null
|
||||
then
|
||||
tar -xzf ../../../../../output/mindspore-lite-*-linux-x64.tar.gz --strip-components 4 --wildcards --no-anchored converter_lite libglog.so.0 libmslite_converter_plugin.so
|
||||
tar -xzf ../../../../../output/mindspore-lite-*-linux-x64.tar.gz --strip-components 4 --wildcards --no-anchored converter_lite *so.* *.so
|
||||
if [ -f ./converter_lite ]; then
|
||||
CONVERTER=./converter_lite
|
||||
else
|
||||
|
|
|
@ -37,7 +37,7 @@ class TransferNet(Cell):
|
|||
BACKBONE = effnet(num_classes=1000)
|
||||
load_checkpoint("efficient_net_b0.ckpt", BACKBONE)
|
||||
|
||||
M.context.set_context(mode=M.context.PYNATIVE_MODE,
|
||||
M.context.set_context(mode=M.context.GRAPH_MODE,
|
||||
device_target="GPU", save_graphs=False)
|
||||
BATCH_SIZE = 16
|
||||
X = M.Tensor(np.ones((BATCH_SIZE, 3, 224, 224)), M.float32)
|
||||
|
|
|
@ -25,7 +25,7 @@ from train_utils import train_wrap
|
|||
|
||||
n = LeNet5()
|
||||
n.set_train()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU", save_graphs=False)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU", save_graphs=False)
|
||||
|
||||
BATCH_SIZE = int(sys.argv[1])
|
||||
x = Tensor(np.ones((BATCH_SIZE, 1, 32, 32)), mstype.float32)
|
||||
|
|
|
@ -12,9 +12,9 @@ if [[ -z ${EXPORT} ]]; then
|
|||
fi
|
||||
fi
|
||||
|
||||
|
||||
CONVERTER="../../../build/tools/converter/converter_lite"
|
||||
if [ ! -f "$CONVERTER" ]; then
|
||||
$CONVERTER &> /dev/null
|
||||
if [ "$?" -ne 0 ]; then
|
||||
if ! command -v converter_lite &> /dev/null
|
||||
then
|
||||
tar -xzf ../../../../../output/mindspore-lite-*-linux-x64.tar.gz --strip-components 4 --wildcards --no-anchored converter_lite *so.* *.so
|
||||
|
|
|
@ -112,6 +112,10 @@ public class FileUtil {
|
|||
if (line.isEmpty()) {
|
||||
continue;
|
||||
}
|
||||
String[] info = line.split(">>>");
|
||||
if (info.length > 1) {
|
||||
line = info[1];
|
||||
}
|
||||
List<Integer> tokens = customTokenizer.tokenize(line, isTrainMode);
|
||||
Optional<Feature> feature = customTokenizer.getFeatures(tokens, "other");
|
||||
if (!feature.isPresent()) {
|
||||
|
|
|
@ -47,10 +47,11 @@ public class Model {
|
|||
* @return build status.
|
||||
*/
|
||||
public boolean build(Graph graph, MSContext context, TrainCfg cfg) {
|
||||
if (graph == null || context == null || cfg == null) {
|
||||
if (graph == null || context == null) {
|
||||
return false;
|
||||
}
|
||||
modelPtr = this.buildByGraph(graph.getGraphPtr(), context.getMSContextPtr(), cfg.getTrainCfgPtr());
|
||||
long cfgPtr = cfg != null ? cfg.getTrainCfgPtr() : 0;
|
||||
modelPtr = this.buildByGraph(graph.getGraphPtr(), context.getMSContextPtr(), cfgPtr);
|
||||
return modelPtr != 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -53,6 +53,16 @@ public class MSContext {
|
|||
return addDeviceInfo(msContextPtr, deviceType, isEnableFloat16, 3);
|
||||
}
|
||||
|
||||
/**
|
||||
* Init Context,default use 2 thread,no bind mode.
|
||||
*
|
||||
* @return init status.
|
||||
*/
|
||||
public boolean init() {
|
||||
this.msContextPtr = createMSContext(2, 0, false);
|
||||
return this.msContextPtr != 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Init Context.
|
||||
*
|
||||
|
|
|
@ -45,7 +45,11 @@ extern "C" JNIEXPORT jlong JNICALL Java_com_mindspore_Model_buildByGraph(JNIEnv
|
|||
MS_LOGE("Make train config failed");
|
||||
return jlong(nullptr);
|
||||
}
|
||||
cfg.reset(c_cfg_ptr);
|
||||
if (c_cfg_ptr != nullptr) {
|
||||
cfg.reset(c_cfg_ptr);
|
||||
} else {
|
||||
cfg.reset();
|
||||
}
|
||||
auto model = new (std::nothrow) mindspore::Model();
|
||||
if (model == nullptr) {
|
||||
MS_LOGE("Model new failed");
|
||||
|
|
|
@ -53,6 +53,20 @@ public class ModelTest {
|
|||
liteModel.free();
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBuildByInferGraphSuccess() {
|
||||
String modelFile = "../test/ut/src/runtime/kernel/arm/test_data/nets/lenet_tod_infer.ms";
|
||||
Graph g = new Graph();
|
||||
assertTrue(g.load(modelFile));
|
||||
MSContext context = new MSContext();
|
||||
context.init();
|
||||
context.addDeviceInfo(DeviceType.DT_CPU, false, 0);
|
||||
Model liteModel = new Model();
|
||||
boolean isSuccess = liteModel.build(g, context, null);
|
||||
assertTrue(isSuccess);
|
||||
liteModel.free();
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBuildByFileSuccess() {
|
||||
String modelFile = "../test/ut/src/runtime/kernel/arm/test_data/nets/lenet_tod_infer.ms";
|
||||
|
|
Loading…
Reference in New Issue