fix docs related issues master

This commit is contained in:
lilinjie 2022-11-09 14:38:16 +08:00
parent d0b4a09987
commit 23ad3aad53
9 changed files with 25 additions and 20 deletions

View File

@ -26,7 +26,7 @@ mindspore.nn.PReLU
- **w** (Union[float, list, Tensor]) - 参数的初始值。它可以是float、float组成的list或与输入Tensor `x` 具有相同数据类型的Tensor。默认值0.25。
输入:
- **x** (Tensor) - PReLU的输入,任意维度的Tensor其数据类型为float16或float32。
- **x** (Tensor) - PReLU的输入Tensorshape为 :math:`(N, *)` ,其中 :math:`*` 表示任意的额外维度,数据类型为float16或float32。
输出:
Tensor数据类型和shape与 `x` 相同。

View File

@ -13,8 +13,8 @@ mindspore.ops.bitwise_and
如果 `x``y` 数据类型不同,低精度数据类型将自动转换成高精度数据类型。
参数:
- **x** (Tensor) - 第一个输入是一个数据类型为uint16、int16或int32的Tensor
- **y** (Tensor) - 第二个输入,是一个与 `x` 相同类型的Tensor
- **x** (Tensor) - 第一个输入Tensor其shape为 :math:`(N, *)` ,其中 :math:`*` 为任意数量的额外维度。支持的数据类型有int8、uint8、int16、uint16、int32、uint32、int64和uint64
- **y** (Tensor) - 第二个输入Tensor数据类型与 `x` 一致
返回:
Tensor是一个与 `x` 相同类型的Tensor。

View File

@ -13,8 +13,8 @@ mindspore.ops.bitwise_or
如果 `x``y` 数据类型不同,低精度数据类型将自动转换成高精度数据类型。
参数:
- **x** (Tensor) - 第一个输入是一个数据类型为uint16、int16或int32的Tensor
- **y** (Tensor) - 第二个输入,是一个与 `x` 相同类型的Tensor
- **x** (Tensor) - 第一个输入Tensor其shape为 :math:`(N, *)` ,其中 :math:`*` 为任意数量的额外维度。支持的数据类型有int8、uint8、int16、uint16、int32、uint32、int64和uint64
- **y** (Tensor) - 第二个输入Tensor数据类型与 `x` 一致
返回:
Tensor是一个与 `x` 相同类型的Tensor。

View File

@ -13,8 +13,8 @@ mindspore.ops.bitwise_xor
如果 `x``y` 数据类型不同,低精度数据类型将自动转换成高精度数据类型。
参数:
- **x** (Tensor) - 第一个输入是一个数据类型为uint16、int16或int32的Tensor
- **y** (Tensor) - 第二个输入,是一个与 `x` 相同类型的Tensor
- **x** (Tensor) - 第一个输入Tensor其shape为 :math:`(N, *)` ,其中 :math:`*` 为任意数量的额外维度。支持的数据类型有int8、uint8、int16、uint16、int32、uint32、int64和uint64
- **y** (Tensor) - 第二个输入Tensor数据类型与 `x` 一致
返回:
Tensor是一个与 `x` 相同类型的Tensor。

View File

@ -17,11 +17,11 @@ mindspore.ops.prelu
Ascend不支持标量和1维向量格式的输入。
参数:
- **x** (Tensor) - 激活函数的输入Tensor。数据类型为float16或float32。shape为 :math:`(N, C, *)` ,其中 :math:`*` 表示任意的附加维度。
- **x** (Tensor) - 激活函数的输入Tensor。数据类型为float16或float32。shape为 :math:`(N, *)` ,其中 :math:`*` 表示任意的附加维度。
- **weight** (Tensor) - 权重Tensor。数据类型为float16或float32。 `weight` 只可以是向量长度与输入x的通道数C相同。在GPU设备上当输入为标量时shape为(1,)。
返回:
Tensor数据类型与 `x` 相同。
Tensor其shape和数据类型与 `x` 相同。
有关详细信息,请参考 :class:`mindspore.nn.PReLU`

View File

@ -3392,7 +3392,7 @@ def matrix_set_diag(x, diagonal, k=0, align="RIGHT_LEFT"):
0), x.shape[-1] + min(-k[0], 0)).
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([[7, 7, 7, 7],

View File

@ -1831,9 +1831,10 @@ def bitwise_and(x, y):
the relatively highest priority data type.
Args:
x (Tensor): The input tensor with int16, int32 or uint16 data type.
:math:`(N,*)` where :math:`*` means, any number of additional dimensions.
y (Tensor): The input tensor with same type as the `x`.
x (Tensor): The first input tensor with shape :math:`(N,*)` where :math:`*` means
any number of additional dimensions. The supported data types are:
int8, uint8, int16, uint16, int32, uint32, int64 and uint64.
y (Tensor): The second input tensor with the same dtype as `x`.
Returns:
Tensor, has the same type as the `x`.
@ -1868,8 +1869,10 @@ def bitwise_or(x, y):
the relatively highest priority data type.
Args:
x (Tensor): The input tensor with int16, int32 or uint16 data type.
y (Tensor): The input tensor with same type as the `x`.
x (Tensor): The first input tensor with shape :math:`(N,*)` where :math:`*` means
any number of additional dimensions. The supported data types are:
int8, uint8, int16, uint16, int32, uint32, int64 and uint64.
y (Tensor): The second input tensor with the same dtype as `x`.
Returns:
Tensor, has the same type as the `x`.
@ -1904,8 +1907,10 @@ def bitwise_xor(x, y):
the relatively highest priority data type.
Args:
x (Tensor): The input tensor with int16, int32 or uint16 data type.
y (Tensor): The input tensor with same type as the `x`.
x (Tensor): The first input tensor with shape :math:`(N,*)` where :math:`*` means
any number of additional dimensions. The supported data types are:
int8, uint8, int16, uint16, int32, uint32, int64 and uint64.
y (Tensor): The second input tensor with the same dtype as `x`.
Returns:
Tensor, has the same type as the `x`.

View File

@ -2417,13 +2417,13 @@ def prelu(x, weight):
Args:
x (Tensor): The input Tensor of the activation function. The data type is float16 or float32.
The shape is :math:`(N, C, *)` where :math:`*` means, any number of additional dimensions.
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
weight (Tensor): Weight Tensor. The data type is float16 or float32.
The weight can only be a vector, and the length is the same as the number of channels C of the `input_x`.
On GPU devices, when the input is a scalar, the shape is (1,).
Returns:
Tensor, with the same dtype as `x`.
Tensor, with the same shape and dtype as `x`.
For detailed information, please refer to :class:`mindspore.nn.PReLU`.

View File

@ -1515,7 +1515,7 @@ class MatrixSetDiagV3(Primitive):
0), x.shape[-1] + min(-k[0], 0)).
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([[7, 7, 7, 7],