fix docs related issues master
This commit is contained in:
parent
d0b4a09987
commit
23ad3aad53
|
@ -26,7 +26,7 @@ mindspore.nn.PReLU
|
|||
- **w** (Union[float, list, Tensor]) - 参数的初始值。它可以是float、float组成的list或与输入Tensor `x` 具有相同数据类型的Tensor。默认值:0.25。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - PReLU的输入,任意维度的Tensor,其数据类型为float16或float32。
|
||||
- **x** (Tensor) - PReLU的输入Tensor,其shape为 :math:`(N, *)` ,其中 :math:`*` 表示任意的额外维度,数据类型为float16或float32。
|
||||
|
||||
输出:
|
||||
Tensor,数据类型和shape与 `x` 相同。
|
||||
|
|
|
@ -13,8 +13,8 @@ mindspore.ops.bitwise_and
|
|||
如果 `x` 和 `y` 数据类型不同,低精度数据类型将自动转换成高精度数据类型。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 第一个输入,是一个数据类型为uint16、int16或int32的Tensor。
|
||||
- **y** (Tensor) - 第二个输入,是一个与 `x` 相同类型的Tensor。
|
||||
- **x** (Tensor) - 第一个输入Tensor,其shape为 :math:`(N, *)` ,其中 :math:`*` 为任意数量的额外维度。支持的数据类型有:int8、uint8、int16、uint16、int32、uint32、int64和uint64。
|
||||
- **y** (Tensor) - 第二个输入Tensor,数据类型与 `x` 一致。
|
||||
|
||||
返回:
|
||||
Tensor,是一个与 `x` 相同类型的Tensor。
|
||||
|
|
|
@ -13,8 +13,8 @@ mindspore.ops.bitwise_or
|
|||
如果 `x` 和 `y` 数据类型不同,低精度数据类型将自动转换成高精度数据类型。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 第一个输入,是一个数据类型为uint16、int16或int32的Tensor。
|
||||
- **y** (Tensor) - 第二个输入,是一个与 `x` 相同类型的Tensor。
|
||||
- **x** (Tensor) - 第一个输入Tensor,其shape为 :math:`(N, *)` ,其中 :math:`*` 为任意数量的额外维度。支持的数据类型有:int8、uint8、int16、uint16、int32、uint32、int64和uint64。
|
||||
- **y** (Tensor) - 第二个输入Tensor,数据类型与 `x` 一致。
|
||||
|
||||
返回:
|
||||
Tensor,是一个与 `x` 相同类型的Tensor。
|
||||
|
|
|
@ -13,8 +13,8 @@ mindspore.ops.bitwise_xor
|
|||
如果 `x` 和 `y` 数据类型不同,低精度数据类型将自动转换成高精度数据类型。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 第一个输入,是一个数据类型为uint16、int16或int32的Tensor。
|
||||
- **y** (Tensor) - 第二个输入,是一个与 `x` 相同类型的Tensor。
|
||||
- **x** (Tensor) - 第一个输入Tensor,其shape为 :math:`(N, *)` ,其中 :math:`*` 为任意数量的额外维度。支持的数据类型有:int8、uint8、int16、uint16、int32、uint32、int64和uint64。
|
||||
- **y** (Tensor) - 第二个输入Tensor,数据类型与 `x` 一致。
|
||||
|
||||
返回:
|
||||
Tensor,是一个与 `x` 相同类型的Tensor。
|
||||
|
|
|
@ -17,11 +17,11 @@ mindspore.ops.prelu
|
|||
Ascend不支持标量和1维向量格式的输入。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 激活函数的输入Tensor。数据类型为float16或float32。shape为 :math:`(N, C, *)` ,其中 :math:`*` 表示任意的附加维度。
|
||||
- **x** (Tensor) - 激活函数的输入Tensor。数据类型为float16或float32。shape为 :math:`(N, *)` ,其中 :math:`*` 表示任意的附加维度。
|
||||
- **weight** (Tensor) - 权重Tensor。数据类型为float16或float32。 `weight` 只可以是向量,长度与输入x的通道数C相同。在GPU设备上,当输入为标量时,shape为(1,)。
|
||||
|
||||
返回:
|
||||
Tensor,数据类型与 `x` 相同。
|
||||
Tensor,其shape和数据类型与 `x` 相同。
|
||||
|
||||
有关详细信息,请参考 :class:`mindspore.nn.PReLU` 。
|
||||
|
||||
|
|
|
@ -3392,7 +3392,7 @@ def matrix_set_diag(x, diagonal, k=0, align="RIGHT_LEFT"):
|
|||
0), x.shape[-1] + min(-k[0], 0)).
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([[7, 7, 7, 7],
|
||||
|
|
|
@ -1831,9 +1831,10 @@ def bitwise_and(x, y):
|
|||
the relatively highest priority data type.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor with int16, int32 or uint16 data type.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
||||
y (Tensor): The input tensor with same type as the `x`.
|
||||
x (Tensor): The first input tensor with shape :math:`(N,*)` where :math:`*` means
|
||||
any number of additional dimensions. The supported data types are:
|
||||
int8, uint8, int16, uint16, int32, uint32, int64 and uint64.
|
||||
y (Tensor): The second input tensor with the same dtype as `x`.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same type as the `x`.
|
||||
|
@ -1868,8 +1869,10 @@ def bitwise_or(x, y):
|
|||
the relatively highest priority data type.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor with int16, int32 or uint16 data type.
|
||||
y (Tensor): The input tensor with same type as the `x`.
|
||||
x (Tensor): The first input tensor with shape :math:`(N,*)` where :math:`*` means
|
||||
any number of additional dimensions. The supported data types are:
|
||||
int8, uint8, int16, uint16, int32, uint32, int64 and uint64.
|
||||
y (Tensor): The second input tensor with the same dtype as `x`.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same type as the `x`.
|
||||
|
@ -1904,8 +1907,10 @@ def bitwise_xor(x, y):
|
|||
the relatively highest priority data type.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor with int16, int32 or uint16 data type.
|
||||
y (Tensor): The input tensor with same type as the `x`.
|
||||
x (Tensor): The first input tensor with shape :math:`(N,*)` where :math:`*` means
|
||||
any number of additional dimensions. The supported data types are:
|
||||
int8, uint8, int16, uint16, int32, uint32, int64 and uint64.
|
||||
y (Tensor): The second input tensor with the same dtype as `x`.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same type as the `x`.
|
||||
|
|
|
@ -2417,13 +2417,13 @@ def prelu(x, weight):
|
|||
|
||||
Args:
|
||||
x (Tensor): The input Tensor of the activation function. The data type is float16 or float32.
|
||||
The shape is :math:`(N, C, *)` where :math:`*` means, any number of additional dimensions.
|
||||
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
||||
weight (Tensor): Weight Tensor. The data type is float16 or float32.
|
||||
The weight can only be a vector, and the length is the same as the number of channels C of the `input_x`.
|
||||
On GPU devices, when the input is a scalar, the shape is (1,).
|
||||
|
||||
Returns:
|
||||
Tensor, with the same dtype as `x`.
|
||||
Tensor, with the same shape and dtype as `x`.
|
||||
|
||||
For detailed information, please refer to :class:`mindspore.nn.PReLU`.
|
||||
|
||||
|
|
|
@ -1515,7 +1515,7 @@ class MatrixSetDiagV3(Primitive):
|
|||
0), x.shape[-1] + min(-k[0], 0)).
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([[7, 7, 7, 7],
|
||||
|
|
Loading…
Reference in New Issue