[feat] [assistant] [I40GHB] add Cauchy

[feat] [assistant] [I40GHB] add Cauchy
This commit is contained in:
13355308989 2022-10-19 13:48:28 +08:00
parent 3942f0a0d8
commit 22d82e2a0a
8 changed files with 305 additions and 0 deletions

View File

@ -0,0 +1,82 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plugin/device/cpu/kernel/cauchy_cpu_kernel.h"
#include <vector>
#include <cmath>
#include <type_traits>
#include <memory>
#include <functional>
#include <random>
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/device/cpu/kernel/arithmetic_cpu_kernel.h"
namespace mindspore {
namespace kernel {
const size_t kCauchyOutputNum = 1;
// namespace
void CauchyCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
size_t output_num = common::AnfAlgo::GetOutputTensorNum(kernel_node);
CHECK_KERNEL_OUTPUTS_NUM(output_num, kCauchyOutputNum, common::AnfAlgo::GetCNodeName(kernel_node));
std::vector<int64_t> size_ = common::AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, "size");
sigma_ = common::AnfAlgo::GetNodeAttr<float>(kernel_node, "sigma");
median_ = common::AnfAlgo::GetNodeAttr<float>(kernel_node, "median");
auto y_shape = common::AnfAlgo::GetOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < size_.size(); i++) {
if (size_[i] <= 0) {
MS_EXCEPTION(ValueError) << "For Cauchy, each dimension of size must be greater than zero.";
}
if (size_[i] != y_shape[i]) {
MS_EXCEPTION(ValueError) << "For Cauchy, output shape not equal with size in dimension " << i << " .";
}
}
}
bool CauchyCpuKernelMod::Launch(const std::vector<kernel::AddressPtr> &, const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &outputs) {
LaunchKernel<float>(outputs);
return true;
}
template <typename T>
bool CauchyCpuKernelMod::LaunchKernel(const std::vector<AddressPtr> &outputs) {
T *y_data = reinterpret_cast<T *>(outputs[0]->addr);
std::random_device rd;
std::default_random_engine generator(rd());
std::cauchy_distribution<float> cauchy_d(median_, sigma_);
auto end = outputs[0]->size / sizeof(T);
for (size_t i = 0; i < end; ++i) {
float data = cauchy_d(generator);
y_data[i] = static_cast<T>(data);
}
return true;
}
std::vector<KernelAttr> CauchyCpuKernelMod::GetOpSupport() {
static std::vector<KernelAttr> support_list = {KernelAttr().AddOutputAttr(kNumberTypeFloat16),
KernelAttr().AddOutputAttr(kNumberTypeFloat32)};
return support_list;
}
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, Cauchy, CauchyCpuKernelMod);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,50 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CAUCHY_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CAUCHY_CPU_KERNEL_H_
#include <functional>
#include <memory>
#include <vector>
#include <iostream>
#include <string>
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/factory/ms_factory.h"
namespace mindspore {
namespace kernel {
class CauchyCpuKernelMod : public DeprecatedNativeCpuKernelMod {
public:
CauchyCpuKernelMod() = default;
~CauchyCpuKernelMod() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs) override;
protected:
std::vector<KernelAttr> GetOpSupport() override;
private:
template <typename T>
bool LaunchKernel(const std::vector<AddressPtr> &outputs);
float sigma_ = 1.0, median_ = 0;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CAUCHY_CPU_KERNEL_H_

View File

@ -0,0 +1,50 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ops/cauchy.h"
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "abstract/ops/primitive_infer_map.h"
#include "mindapi/src/helper.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
namespace mindspore {
namespace ops {
abstract::ShapePtr CauchyInferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
auto prim_name = primitive->name();
(void)CheckAndConvertUtils::CheckInteger("input numbers", input_args.size(), kGreaterEqual, 0, prim_name);
MS_EXCEPTION_IF_NULL(primitive->GetAttr("size"));
auto size = GetValue<std::vector<int64_t>>(primitive->GetAttr("size"));
(void)CheckAndConvertUtils::CheckInteger("the length of 'size'", size.size(), kGreaterThan, 0, prim_name);
return std::make_shared<abstract::Shape>(size);
}
MIND_API_OPERATOR_IMPL(Cauchy, BaseOperator);
abstract::AbstractBasePtr CauchyInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
auto infer_shape = CauchyInferShape(primitive, input_args);
auto infer_type = std::make_shared<TensorType>(kFloat32);
return abstract::MakeAbstract(infer_shape, infer_type);
}
REGISTER_PRIMITIVE_EVAL_IMPL(Cauchy, prim::kPrimCauchy, CauchyInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,39 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_CAUCHY_H_
#define MINDSPORE_CORE_OPS_CAUCHY_H_
#include <vector>
#include <memory>
#include "ops/base_operator.h"
#include "mindapi/base/types.h"
namespace mindspore {
namespace ops {
constexpr auto kNameCauchy = "Cauchy";
class MIND_API Cauchy : public BaseOperator {
public:
Cauchy() : BaseOperator(kNameCauchy) {}
MIND_API_BASE_MEMBER(Cauchy);
void Init() const {}
};
abstract::AbstractBasePtr CauchyInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<abstract::AbstractBasePtr> &input_args);
using PrimCauchy = std::shared_ptr<Cauchy>;
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_Cauchy_H_

View File

@ -133,6 +133,7 @@ constexpr auto kBernoulli = "Bernoulli";
constexpr auto kLinearSumAssignment = "LinearSumAssignment";
// Math
constexpr auto kCauchy = "Cauchy";
constexpr auto kCross = "Cross";
constexpr auto kEditDistance = "EditDistance";
constexpr auto kNextAfter = "NextAfter";
@ -1128,6 +1129,7 @@ GVAR_DEF(PrimitivePtr, kPrimTensorListStack, std::make_shared<Primitive>("Tensor
GVAR_DEF(PrimitivePtr, kPrimTensorListSetItem, std::make_shared<Primitive>("TensorListSetItem"));
// Maths
GVAR_DEF(PrimitivePtr, kPrimCauchy, std::make_shared<Primitive>(kCauchy));
GVAR_DEF(PrimitivePtr, kPrimNextAfter, std::make_shared<Primitive>(kNextAfter));
GVAR_DEF(PrimitivePtr, kPrimCross, std::make_shared<Primitive>(kCross));
GVAR_DEF(PrimitivePtr, kPrimEditDistance, std::make_shared<Primitive>(kEditDistance));

View File

@ -0,0 +1,33 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Cauchy op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
cauchy_op_info = AiCPURegOp("Cauchy") \
.fusion_type("OPAQUE") \
.attr("size", "listInt") \
.attr("sigma", "float") \
.attr("median", "float") \
.output(0, "y", "required") \
.dtype_format(DataType.F16_Default)\
.dtype_format(DataType.F32_Default)\
.get_op_info()
@op_info_register(cauchy_op_info)
def _cauchy_aicpu():
"""Cauchy AiCPU register"""
return

View File

@ -7162,3 +7162,47 @@ class Qr(Primitive):
def __init__(self, full_matrices=False):
"""Initialize Qr"""
validator.check_value_type('full_matrices', full_matrices, [bool], self.name)
class Cauchy(Primitive):
r"""
Create a tensor of shape `size` with random numbers drawn from Cauchy distribution
.. math::
\f(x)= \frac{1}{\pi} \frac{\sigma}{(x-median)^2 +\sigma^2}
Args:
size (list(int)): The size of tensor.
sigma (float): the location parameter, specifying the location
of the peak of the distribution. Default: 1.0.
median (float): the scale parameter which specifies the half-width
at half-maximum. Default: 0.0.
Outputs:
- **y** (Tensor) - Tensor with cauchy distribution data. Tensor shape is size, and data type is float32.
Raises:
TypeError: If `sigma` is not a float.
TypeError: If `median` is not a float.
TypeError: If `size` is not a list.
ValueError: If `size` list is empty.
ValueError: If data of `size` is not a positive integer.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> size = [1]
>>> net = ops.Cauchy(size)
>>> y = net()
>>> print(y)
[0.03128606]
"""
@prim_attr_register
def __init__(self, size, median=0.0, sigma=1.0):
validator.check_value_type('median', median, [float], self.name)
validator.check_value_type('sigma', sigma, [float], self.name)
validator.check_value_type('size', size, (list), self.name)
for index, size_ in enumerate(size):
validator.check_positive_int(size_, 'size[%d]' % index, self.name)

View File

@ -56,6 +56,7 @@ from mindspore.ops.operations.math_ops import CompareAndBitpack
from mindspore.ops.operations.math_ops import Real, Imag, Complex, Angle
from mindspore.ops.operations.math_ops import STFT
from mindspore.ops.operations.math_ops import Qr
from mindspore.ops.operations.math_ops import Cauchy
from mindspore.ops.operations import nn_ops as nps
from mindspore.ops.operations.array_ops import FillDiagonal
from mindspore.ops.operations.array_ops import Im2Col
@ -1432,6 +1433,10 @@ class BincountNet(nn.Cell):
test_case_math_ops = [
('Cauchy', {
'block': Cauchy(size=[2, 3]),
'desc_inputs': [],
'skip': ['backward']}),
('Betainc', {
'block': Betainc(),
'desc_inputs': [Tensor([1, 1, 1, 1], mstype.float32),