!4888 add parallel attention test
Merge pull request !4888 from hanyang/master
This commit is contained in:
commit
226f019e45
|
@ -0,0 +1,146 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.context import set_auto_parallel_context
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
predict = self.network(x)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
|
||||
|
||||
def compile_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5):
|
||||
super().__init__()
|
||||
self.query_w = Parameter(initializer(
|
||||
"normal", [8, 16], ms.float32), name='query')
|
||||
self.query = P.MatMul().set_strategy(strategy1)
|
||||
|
||||
self.key_w = Parameter(initializer(
|
||||
"normal", [8, 16], ms.float32), name='key')
|
||||
self.key = P.MatMul().set_strategy(strategy2)
|
||||
|
||||
self.value_w = Parameter(initializer(
|
||||
"normal", [8, 16], ms.float32), name='value')
|
||||
self.value = P.MatMul().set_strategy(strategy3)
|
||||
|
||||
self.score = P.MatMul().set_strategy(strategy4)
|
||||
self.context = P.MatMul().set_strategy(strategy5)
|
||||
self.transpose1 = P.Transpose()
|
||||
self.transpose2 = P.Transpose()
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
q = self.query(x, self.query_w)
|
||||
k = self.key(x, self.key_w)
|
||||
v = self.value(x, self.value_w)
|
||||
|
||||
k = self.transpose1(k, (1, 0))
|
||||
s = self.score(q, k)
|
||||
|
||||
v = self.transpose2(v, (1, 0))
|
||||
c = self.context(v, s)
|
||||
out = self.relu(c)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def test_self_attention_standalone():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="stand_alone")
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(None, None, None, None, None)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
||||
|
||||
|
||||
def test_self_attention_semi():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((2, 2), (2, 2))
|
||||
strategy3 = ((2, 2), (2, 2))
|
||||
strategy4 = ((2, 4), (4, 1))
|
||||
strategy5 = ((2, 1), (1, 4))
|
||||
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
||||
|
||||
|
||||
def test_self_attention_dp():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy1 = ((8, 1), (1, 1))
|
||||
strategy2 = ((8, 1), (1, 1))
|
||||
strategy3 = ((8, 1), (1, 1))
|
||||
strategy4 = ((8, 1), (1, 1))
|
||||
strategy5 = ((8, 1), (1, 1))
|
||||
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
||||
|
||||
|
||||
def test_self_attention_auto():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(None, None, None, None, None)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
Loading…
Reference in New Issue