auto parallel support bert
This commit is contained in:
parent
9001dc48e6
commit
221a801395
|
@ -610,6 +610,15 @@ Status MatMulBase::CheckForTensorSliceValid() const {
|
|||
return SUCCESS;
|
||||
}
|
||||
|
||||
std::shared_ptr<Strategys> BatchMatMulInfo::GenerateBatchStrategies() {
|
||||
CheckGlobalDeviceManager();
|
||||
size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size();
|
||||
Dimensions batch_strategy(inputs_shape_[1].size() - 1, 1);
|
||||
batch_strategy.insert(batch_strategy.begin(), SizeToLong(dev_num));
|
||||
Strategys strategy_v = {batch_strategy, batch_strategy};
|
||||
return std::make_shared<Strategys>(strategy_v);
|
||||
}
|
||||
|
||||
Status MatMulBase::SetCostUnderStrategy(const mindspore::parallel::StrategyPtr &strategy) {
|
||||
if (InitForCostModel(strategy) == FAILED) {
|
||||
if (is_auto_parallel_) {
|
||||
|
|
|
@ -91,6 +91,8 @@ class BatchMatMulInfo : public MatMul {
|
|||
const PrimitiveAttrs &attrs)
|
||||
: MatMul(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~BatchMatMulInfo() override = default;
|
||||
|
||||
std::shared_ptr<Strategys> GenerateBatchStrategies() override;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -162,6 +162,7 @@ constexpr char SIGMOID_CROSS_ENTROPY_WITH_LOGITS[] = "SigmoidCrossEntropyWithLog
|
|||
constexpr char MATMUL[] = "MatMul";
|
||||
constexpr char GELU[] = "Gelu";
|
||||
constexpr char TANH[] = "Tanh";
|
||||
constexpr char SHAPE_OP[] = "Shape";
|
||||
constexpr char SOFTMAX[] = "Softmax";
|
||||
constexpr char LOG_SOFTMAX[] = "LogSoftmax";
|
||||
constexpr char ACTIVATION[] = "Activation";
|
||||
|
|
|
@ -1673,6 +1673,41 @@ std::shared_ptr<TensorLayout> CreateParameterLayout(const AnfNodePtr &node) {
|
|||
return std::make_shared<TensorLayout>(input_tensor_layout);
|
||||
}
|
||||
|
||||
RedistributionOpListPtr InferSensRedistribution(const AnfNodePtr &node, const TensorLayout &loss_layout) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
TensorRedistribution tensor_redistribution;
|
||||
// create stand alone layout:TensorMap:[all -1],dev_matrix:[dev_num].
|
||||
CheckGlobalDeviceManager();
|
||||
int32_t dev_num = SizeToInt(g_device_manager->GetDeviceListByStageId(0).size());
|
||||
TensorLayout stand_alone_layout;
|
||||
Shapes inputs_shape = GetNodeShape(node);
|
||||
if (inputs_shape.empty()) {
|
||||
MS_LOG(EXCEPTION) << "InferSensRedistribution failed cause inputs shape is empty.";
|
||||
}
|
||||
Shape input_shape_array = inputs_shape[0];
|
||||
if (input_shape_array.empty()) {
|
||||
MS_LOG(INFO) << "No need to redistribution for sens.";
|
||||
return nullptr;
|
||||
}
|
||||
// TensorMap
|
||||
TensorMap stand_alone_tensor_map_array(SizeToInt(input_shape_array.size()), -1);
|
||||
// Dev_matrix
|
||||
Shape dev_matrix_array = {dev_num};
|
||||
if (stand_alone_layout.InitFromVector(dev_matrix_array, stand_alone_tensor_map_array, input_shape_array) == FAILED) {
|
||||
MS_LOG(EXCEPTION) << "Create tensor layout for Sens failed.";
|
||||
}
|
||||
|
||||
// Infer Redistribution op list for stand alone and loss layout.
|
||||
RankList dev_list = g_device_manager->GetDeviceListByStageId(0);
|
||||
if (tensor_redistribution.Init(stand_alone_layout, loss_layout, dev_list) == FAILED) {
|
||||
MS_LOG(EXCEPTION) << "Redistribution for Sens init failed.";
|
||||
}
|
||||
RedistributionOpListPtr sens_redistribution_list = tensor_redistribution.InferTensorRedistributionOperatorList();
|
||||
MS_EXCEPTION_IF_NULL(sens_redistribution_list);
|
||||
|
||||
return sens_redistribution_list;
|
||||
}
|
||||
|
||||
std::shared_ptr<TensorLayout> FindPrevLayout(const AnfNodePtr &node) {
|
||||
if (node->isa<Parameter>()) {
|
||||
return CreateParameterLayout(node);
|
||||
|
@ -1897,7 +1932,18 @@ void SplitSens(const CNodePtr &grad_sens_node, const TensorLayout &loss_grad_lay
|
|||
sens_tensor_param->set_user_data<TensorLayout>(std::make_shared<TensorLayout>(loss_grad_layout));
|
||||
return;
|
||||
}
|
||||
MS_LOG(EXCEPTION) << "The type of sens node is not Tensor or Parameter, it is unsupported now.";
|
||||
if (sens_tensor_node->isa<CNode>()) {
|
||||
auto op_list_ptr = InferSensRedistribution(sens_tensor_node, loss_grad_layout);
|
||||
if (op_list_ptr == nullptr) {
|
||||
return;
|
||||
}
|
||||
auto sens_tensor_cnode = sens_tensor_node->cast<CNodePtr>();
|
||||
auto func_graph = grad_sens_node->func_graph();
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
InsertRedistribution(op_list_ptr, grad_sens_node, func_graph, 1, sens_tensor_cnode);
|
||||
return;
|
||||
}
|
||||
MS_LOG(EXCEPTION) << "The type of sens node is not Tensor or Parameter or CNode, it is unsupported now.";
|
||||
}
|
||||
|
||||
// Use _GetTensorSlice operator to split the sens tensor
|
||||
|
@ -2305,6 +2351,41 @@ std::vector<AnfNodePtr> FindRootForwardCNode(const FuncGraphPtr &graph, const An
|
|||
return root_forward_nodes;
|
||||
}
|
||||
|
||||
void InsertShapeOp(const CNodePtr &node, const AnfNodePtr &pre_node, const FuncGraphPtr &root) {
|
||||
// shape op doesn't have params and attrs.
|
||||
OperatorParams params;
|
||||
OperatorAttrs attrs;
|
||||
OperatorArgs args = std::make_pair(attrs, params);
|
||||
Operator op = std::make_pair(SHAPE_OP, args);
|
||||
InsertNode(op, node, 2, pre_node, root, "shape");
|
||||
}
|
||||
|
||||
void HandleRootReshape(const std::vector<AnfNodePtr> &all_nodes) {
|
||||
// If root graph has reshape op. Find the corresponding parameter.
|
||||
// Reshape's shape is the shape of the parameter.
|
||||
for (auto &node : all_nodes) {
|
||||
if (!node->isa<CNode>()) {
|
||||
continue;
|
||||
}
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
if (!IsValueNode<Primitive>(cnode->input(0)) || cnode->in_forward_flag()) {
|
||||
continue;
|
||||
}
|
||||
auto prim = GetValueNode<PrimitivePtr>(cnode->input(0));
|
||||
if (prim->name() != RESHAPE) {
|
||||
continue;
|
||||
}
|
||||
auto root = node->func_graph();
|
||||
auto all_dfs_nodes = DeepLinkedGraphSearch(node);
|
||||
for (auto r_iter = all_dfs_nodes.rbegin(); r_iter != all_dfs_nodes.rend(); ++r_iter) {
|
||||
if ((*r_iter)->isa<Parameter>()) {
|
||||
InsertShapeOp(cnode, *r_iter, root);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MarkForwardCNode(const FuncGraphPtr &root) {
|
||||
MS_EXCEPTION_IF_NULL(root);
|
||||
auto all_nodes = root->nodes();
|
||||
|
@ -2456,6 +2537,7 @@ bool StepParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &optimizer)
|
|||
|
||||
// mark the forward cnodes, parallel only care these nodes
|
||||
MarkForwardCNode(root);
|
||||
HandleRootReshape(all_nodes);
|
||||
|
||||
if (FindCommunicationOp(all_nodes)) {
|
||||
MS_LOG(EXCEPTION) << "The graph contain communication op";
|
||||
|
|
|
@ -0,0 +1,177 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
|
||||
import mindspore.nn as nn
|
||||
from mindspore.train import Model, ParallelMode
|
||||
from tests.dataset_mock import MindData
|
||||
|
||||
|
||||
GRADIENT_CLIP_TYPE = 1
|
||||
GRADIENT_CLIP_VALUE = 1.0
|
||||
clip_grad = C.MultitypeFuncGraph("clip_grad")
|
||||
grad_scale = C.MultitypeFuncGraph("grad_scale")
|
||||
reciprocal = P.Reciprocal()
|
||||
|
||||
|
||||
@grad_scale.register("Tensor", "Tensor")
|
||||
def tensor_grad_scale(scale, grad):
|
||||
return grad * reciprocal(scale)
|
||||
|
||||
|
||||
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=65536, scale_factor=2, scale_window=1000)
|
||||
|
||||
|
||||
@clip_grad.register("Number", "Number", "Tensor")
|
||||
def _clip_grad(clip_type, clip_value, grad):
|
||||
dt = F.dtype(grad)
|
||||
if clip_type == 0:
|
||||
new_grad = C.clip_by_value(grad, F.cast(F.tuple_to_array((-clip_value,)), dt),
|
||||
F.cast(F.tuple_to_array((clip_value,)), dt))
|
||||
else:
|
||||
new_grad = nn.ClipByNorm()(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
|
||||
return new_grad
|
||||
|
||||
|
||||
class TrainOneStepWithLossScaleCell(nn.Cell):
|
||||
def __init__(self, network, optimizer, scale_update_cell=None):
|
||||
super(TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.weights = optimizer.parameters
|
||||
self.optimizer = optimizer
|
||||
self.grad = C.GradOperation('grad',
|
||||
get_by_list=True,
|
||||
sens_param=True)
|
||||
self.reducer_flag = False
|
||||
self.grad_reducer = F.identity
|
||||
self.cast = P.Cast()
|
||||
self.alloc_status = P.NPUAllocFloatStatus()
|
||||
self.get_status = P.NPUGetFloatStatus()
|
||||
self.clear_before_grad = P.NPUClearFloatStatus()
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
||||
self.depend_parameter_use = P.ControlDepend(depend_mode=1)
|
||||
self.base = Tensor(1, mstype.float32)
|
||||
self.less_equal = P.LessEqual()
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.loss_scale = None
|
||||
self.loss_scaling_manager = scale_update_cell
|
||||
if scale_update_cell:
|
||||
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
|
||||
name="loss_scale")
|
||||
|
||||
@C.add_flags(has_effect=True)
|
||||
def construct(self, x, sens=None):
|
||||
"""Defines the computation performed."""
|
||||
weights = self.weights
|
||||
loss = self.network(x)
|
||||
if sens is None:
|
||||
scaling_sens = self.loss_scale
|
||||
else:
|
||||
scaling_sens = sens
|
||||
# alloc status and clear should be right before gradoperation
|
||||
init = self.alloc_status()
|
||||
self.clear_before_grad(init)
|
||||
grads = self.grad(self.network, weights)(x, self.cast(scaling_sens, mstype.float32))
|
||||
# apply grad reducer on grads
|
||||
grads = self.grad_reducer(grads)
|
||||
grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads)
|
||||
self.get_status(init)
|
||||
flag_sum = self.reduce_sum(init, (0,))
|
||||
cond = self.less_equal(self.base, flag_sum)
|
||||
overflow = cond
|
||||
if sens is None:
|
||||
overflow = self.loss_scaling_manager(self.loss_scale, cond)
|
||||
if overflow:
|
||||
succ = False
|
||||
else:
|
||||
succ = self.optimizer(grads)
|
||||
ret = (loss, cond, scaling_sens)
|
||||
return F.depend(ret, succ)
|
||||
|
||||
|
||||
class DatasetLenet(MindData):
|
||||
def __init__(self, predict, label, length=3):
|
||||
super(DatasetLenet, self).__init__()
|
||||
self.predict = predict
|
||||
self.label = label
|
||||
self.index = 0
|
||||
self.length = length
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.index >= self.length:
|
||||
raise StopIteration
|
||||
self.index += 1
|
||||
return self.predict, self.label
|
||||
|
||||
def reset(self):
|
||||
self.index = 0
|
||||
|
||||
|
||||
class LoopLayer(nn.Cell):
|
||||
def __init__(self):
|
||||
super(LoopLayer, self).__init__()
|
||||
self.matmul = P.MatMul()
|
||||
self.relu = P.ReLU()
|
||||
self.matmul_weight = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.matmul(x, self.matmul_weight)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.exp = P.Exp()
|
||||
self.mean = P.ReduceMean()
|
||||
layers = []
|
||||
for _ in range(3):
|
||||
layer = LoopLayer()
|
||||
layers.append(layer)
|
||||
self.layers = nn.CellList(layers)
|
||||
|
||||
def construct(self, x):
|
||||
out = self.exp(x)
|
||||
for layer in self.layers:
|
||||
layer_out = layer(out)
|
||||
out = layer_out
|
||||
out = self.mean(out, -1)
|
||||
return out
|
||||
|
||||
def test_loss_scale():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8)
|
||||
predict = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([64,]), dtype=ms.int32)
|
||||
dataset = DatasetLenet(predict, label)
|
||||
net = Net()
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
|
||||
net = TrainOneStepWithLossScaleCell(net, opt, update_cell)
|
||||
model = Model(network=net)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
Loading…
Reference in New Issue