!44860 kernelmod: lu
Merge pull request !44860 from hujiahui8/kernelmod
This commit is contained in:
commit
1f35feb33a
|
@ -63,39 +63,53 @@ void LUCpuKernelMod::InitPivotVecInfo(const std::vector<size_t> &shape, size_t *
|
|||
}
|
||||
}
|
||||
|
||||
void LUCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
|
||||
dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0);
|
||||
size_t input_num = common::AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
bool LUCpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) {
|
||||
MS_EXCEPTION_IF_NULL(base_operator);
|
||||
kernel_name_ = base_operator->GetPrim()->name();
|
||||
dtype_ = inputs[0]->GetDtype();
|
||||
size_t input_num = inputs.size();
|
||||
CHECK_KERNEL_INPUTS_NUM(input_num, kLUInputsNum, kernel_name_);
|
||||
size_t output_num = common::AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
size_t output_num = outputs.size();
|
||||
CHECK_KERNEL_OUTPUTS_NUM(output_num, kLUOutputsNum, kernel_name_);
|
||||
auto a_shape = Convert2SizeTClipNeg(common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, kLUaIndex));
|
||||
InitMatrixInfo(a_shape, &a_row_, &a_col_);
|
||||
auto lu_shape = Convert2SizeTClipNeg(common::AnfAlgo::GetOutputInferShape(kernel_node, kLuIndex));
|
||||
InitMatrixInfo(lu_shape, &lu_row_, &lu_col_);
|
||||
auto permutation_shape = Convert2SizeTClipNeg(common::AnfAlgo::GetOutputInferShape(kernel_node, kPermutationIndex));
|
||||
InitMatrixInfo(permutation_shape, &permutation_row_, &permutation_col_);
|
||||
auto pivots_shape = Convert2SizeTClipNeg(common::AnfAlgo::GetOutputInferShape(kernel_node, kPivotsIndex));
|
||||
InitPivotVecInfo(pivots_shape, &pivots_row_, &pivots_col_);
|
||||
|
||||
auto kernel_attr = GetKernelAttrFromNode(kernel_node);
|
||||
auto kernel_attr = GetKernelAttrFromTensors(inputs, outputs);
|
||||
auto [is_match, index] = MatchKernelAttr(kernel_attr, GetOpSupport());
|
||||
if (!is_match) {
|
||||
MS_LOG(EXCEPTION) << "LU does not support this kernel data type: " << kernel_attr;
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', it does not support this kernel data type: " << kernel_attr;
|
||||
return false;
|
||||
}
|
||||
kernel_func_ = std::get<1>(func_list_[index]);
|
||||
const size_t kTwoIdx = 2;
|
||||
init_io_func_ = std::get<kTwoIdx>(func_list_[index]);
|
||||
kernel_func_ = func_list_[index].second;
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void LUCpuKernelMod::InitIOSize(const CNodePtr &kernel_node) {
|
||||
DeprecatedNativeCpuKernelMod::InitInputOutputSize(kernel_node);
|
||||
size_t lu_size = lu_col_ * sizeof(T);
|
||||
int LUCpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs, const std::map<uint32_t, tensor::TensorPtr> &) {
|
||||
if (int ret = KernelMod::Resize(base_operator, inputs, outputs); ret != KRET_OK) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
a_row_ = 1;
|
||||
a_col_ = 1;
|
||||
lu_row_ = 1;
|
||||
lu_col_ = 1;
|
||||
permutation_row_ = 1;
|
||||
permutation_col_ = 1;
|
||||
pivots_row_ = 1;
|
||||
pivots_col_ = 1;
|
||||
auto a_shape = Convert2SizeTClipNeg(inputs[kLUaIndex]->GetShapeVector());
|
||||
InitMatrixInfo(a_shape, &a_row_, &a_col_);
|
||||
auto lu_shape = Convert2SizeTClipNeg(outputs[kLuIndex]->GetShapeVector());
|
||||
InitMatrixInfo(lu_shape, &lu_row_, &lu_col_);
|
||||
auto permutation_shape = Convert2SizeTClipNeg(outputs[kPermutationIndex]->GetShapeVector());
|
||||
InitMatrixInfo(permutation_shape, &permutation_row_, &permutation_col_);
|
||||
auto pivots_shape = Convert2SizeTClipNeg(outputs[kPivotsIndex]->GetShapeVector());
|
||||
InitPivotVecInfo(pivots_shape, &pivots_row_, &pivots_col_);
|
||||
|
||||
size_t lu_size = lu_col_ * dtype_;
|
||||
(void)workspace_size_list_.emplace_back(lu_size);
|
||||
(void)workspace_size_list_.emplace_back(lu_size);
|
||||
return KRET_OK;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@ -247,25 +261,24 @@ bool LUCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
|
|||
return true;
|
||||
}
|
||||
|
||||
std::vector<std::tuple<KernelAttr, LUCpuKernelMod::LUFunc, LUCpuKernelMod::InitFunc>> LUCpuKernelMod::func_list_ = {
|
||||
std::vector<std::pair<KernelAttr, LUCpuKernelMod::LUFunc>> LUCpuKernelMod::func_list_ = {
|
||||
{KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
&LUCpuKernelMod::LaunchKernel<float>, &LUCpuKernelMod::InitIOSize<float>},
|
||||
&LUCpuKernelMod::LaunchKernel<float>},
|
||||
{KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
&LUCpuKernelMod::LaunchKernel<double>, &LUCpuKernelMod::InitIOSize<double>}};
|
||||
&LUCpuKernelMod::LaunchKernel<double>}};
|
||||
|
||||
std::vector<KernelAttr> LUCpuKernelMod::GetOpSupport() {
|
||||
std::vector<KernelAttr> support_list;
|
||||
(void)std::transform(
|
||||
func_list_.begin(), func_list_.end(), std::back_inserter(support_list),
|
||||
[](const std::tuple<KernelAttr, LUFunc, InitFunc> &tuple_item) { return std::get<0>(tuple_item); });
|
||||
(void)std::transform(func_list_.begin(), func_list_.end(), std::back_inserter(support_list),
|
||||
[](const std::pair<KernelAttr, LUFunc> &pair) { return pair.first; });
|
||||
return support_list;
|
||||
}
|
||||
|
||||
|
|
|
@ -14,9 +14,11 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EIGEN_LU_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EIGEN_LU_CPU_KERNEL_H_
|
||||
#ifndef MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_EIGEN_LU_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_EIGEN_LU_CPU_KERNEL_H_
|
||||
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
|
@ -24,11 +26,16 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class LUCpuKernelMod : public DeprecatedNativeCpuKernelMod {
|
||||
class LUCpuKernelMod : public NativeCpuKernelMod {
|
||||
public:
|
||||
LUCpuKernelMod() = default;
|
||||
~LUCpuKernelMod() override = default;
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) override;
|
||||
|
||||
int Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs, const std::map<uint32_t, tensor::TensorPtr> &) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override {
|
||||
return kernel_func_(this, inputs, workspace, outputs);
|
||||
|
@ -51,12 +58,8 @@ class LUCpuKernelMod : public DeprecatedNativeCpuKernelMod {
|
|||
const std::vector<kernel::AddressPtr> &outputs);
|
||||
using LUFunc = std::function<bool(LUCpuKernelMod *, const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &, const std::vector<kernel::AddressPtr> &)>;
|
||||
using InitFunc = std::function<void(LUCpuKernelMod *, const CNodePtr &)>;
|
||||
static std::vector<std::tuple<KernelAttr, LUFunc, InitFunc>> func_list_;
|
||||
static std::vector<std::pair<KernelAttr, LUFunc>> func_list_;
|
||||
LUFunc kernel_func_;
|
||||
InitFunc init_io_func_;
|
||||
|
||||
void InitInputOutputSize(const CNodePtr &kernel_node) override { init_io_func_(this, kernel_node); }
|
||||
|
||||
void InitMatrixInfo(const std::vector<size_t> &shape, size_t *row, size_t *col);
|
||||
void InitPivotVecInfo(const std::vector<size_t> &shape, size_t *row, size_t *col) const;
|
||||
|
@ -75,4 +78,4 @@ class LUCpuKernelMod : public DeprecatedNativeCpuKernelMod {
|
|||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EIGEN_LU_CPU_KERNEL_H_
|
||||
#endif // MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_EIGEN_LU_CPU_KERNEL_H_
|
||||
|
|
|
@ -14,11 +14,12 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_LU_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_LU_GPU_KERNEL_H_
|
||||
#ifndef MINDSPORE_CCSRC_PLUGIN_DEVICE_GPU_KERNEL_MATH_LU_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_PLUGIN_DEVICE_GPU_KERNEL_MATH_LU_GPU_KERNEL_H_
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <type_traits>
|
||||
|
@ -32,7 +33,7 @@ namespace mindspore {
|
|||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
class LUGpuKernelMod : public DeprecatedNativeGpuKernelMod {
|
||||
class LUGpuKernelMod : public NativeGpuKernelMod {
|
||||
public:
|
||||
LUGpuKernelMod() : is_null_input_(false) {}
|
||||
~LUGpuKernelMod() = default;
|
||||
|
@ -59,26 +60,26 @@ class LUGpuKernelMod : public DeprecatedNativeGpuKernelMod {
|
|||
size_t host_transpose_shape[shape_2d] = {m_, n_};
|
||||
size_t host_transpose_axis[shape_2d] = {1, 0};
|
||||
T *dev_transpose_work = GetDeviceAddress<T>(workspace, kDim3);
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(dev_transpose_axis, host_transpose_axis, shape_2d * sizeof(size_t),
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"malloc input shape workspace failed");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(
|
||||
cudaMemcpyAsync(dev_transpose_axis, host_transpose_axis, shape_2d * sizeof(size_t), cudaMemcpyHostToDevice,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"malloc input shape workspace failed");
|
||||
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(batch_output_addr, batch_input_addr, batch_size_ * m_ * n_ * unit_size_,
|
||||
cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch.");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(
|
||||
cudaMemcpyAsync(batch_output_addr, batch_input_addr, batch_size_ * m_ * n_ * unit_size_, cudaMemcpyDeviceToDevice,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch.");
|
||||
|
||||
// 4. query working space of getrf
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT(kernel_node_,
|
||||
cusolverDnSgetrf_bufferSize(handle_, m_, n_, batch_output_addr, lda_, &lwork_),
|
||||
"cusolver query lu work size fail");
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT_NOTRACE(
|
||||
cusolverDnSgetrf_bufferSize(handle_, m_, n_, batch_output_addr, lda_, &lwork_),
|
||||
"cusolver query lu work size fail");
|
||||
|
||||
} else if constexpr (std::is_same_v<T, double>) {
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT(kernel_node_,
|
||||
cusolverDnDgetrf_bufferSize(handle_, m_, n_, batch_output_addr, lda_, &lwork_),
|
||||
"cusolver query lu work size fail");
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT_NOTRACE(
|
||||
cusolverDnDgetrf_bufferSize(handle_, m_, n_, batch_output_addr, lda_, &lwork_),
|
||||
"cusolver query lu work size fail");
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', the data type only should be float or double, right now.";
|
||||
}
|
||||
|
@ -88,24 +89,23 @@ class LUGpuKernelMod : public DeprecatedNativeGpuKernelMod {
|
|||
T *output_addr = batch_output_addr + batch * m_ * n_;
|
||||
int *permutation_addr = batch_permutation_addr + batch * k_ * k_;
|
||||
int *piv_output_addr = batch_piv_output_addr + batch * k_;
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(dev_transpose_shape, host_transpose_shape, shape_2d * sizeof(size_t),
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"malloc input shape workspace failed");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(
|
||||
cudaMemcpyAsync(dev_transpose_shape, host_transpose_shape, shape_2d * sizeof(size_t), cudaMemcpyHostToDevice,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"malloc input shape workspace failed");
|
||||
|
||||
CalTranspose(m_ * n_, output_addr, dev_transpose_shape, dev_transpose_axis, shape_2d, dev_transpose_work,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
|
||||
// 6.lu factorization according to cuSolver api, outputs have been written to input's matrix.
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT(
|
||||
kernel_node_,
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT_NOTRACE(
|
||||
|
||||
cusolverDnSgetrf(handle_, m_, n_, dev_transpose_work, lda_, d_work_, piv_output_addr, info_output_addr),
|
||||
"cusolver lu fail");
|
||||
} else if constexpr (std::is_same_v<T, double>) {
|
||||
// 6.lu factorization according to cuSolver api, outputs have been written to input's matrix.
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT(
|
||||
kernel_node_,
|
||||
CHECK_CUSOLVER_RET_WITH_EXCEPT_NOTRACE(
|
||||
cusolverDnDgetrf(handle_, m_, n_, dev_transpose_work, lda_, d_work_, piv_output_addr, info_output_addr),
|
||||
"cusolver lu fail");
|
||||
} else {
|
||||
|
@ -120,10 +120,10 @@ class LUGpuKernelMod : public DeprecatedNativeGpuKernelMod {
|
|||
std::vector<int> host_permuted(k_, 0);
|
||||
std::vector<int> host_pivots(k_, 0);
|
||||
std::vector<int> host_permutation(k_ * k_, 0);
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(host_pivots.data(), piv_output_addr, sizeof(int) * k_,
|
||||
cudaMemcpyDeviceToHost, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch copy pivots to host.");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(
|
||||
cudaMemcpyAsync(host_pivots.data(), piv_output_addr, sizeof(int) * k_, cudaMemcpyDeviceToHost,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch copy pivots to host.");
|
||||
|
||||
// cal pivots && permutation major by row.
|
||||
for (size_t i = 0; i < k_; ++i) {
|
||||
|
@ -139,40 +139,64 @@ class LUGpuKernelMod : public DeprecatedNativeGpuKernelMod {
|
|||
for (size_t i = 0; i < k_; ++i) {
|
||||
host_permutation[host_permuted[i] * k_ + i] = 1;
|
||||
}
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(permutation_addr, host_permutation.data(), sizeof(int) * k_ * k_,
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch copy permutation matrix.");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
|
||||
cudaMemcpyAsync(piv_output_addr, host_pivots.data(), sizeof(int) * k_,
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch copy pivots array.");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(
|
||||
cudaMemcpyAsync(permutation_addr, host_permutation.data(), sizeof(int) * k_ * k_, cudaMemcpyHostToDevice,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch copy permutation matrix.");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(
|
||||
cudaMemcpyAsync(piv_output_addr, host_pivots.data(), sizeof(int) * k_, cudaMemcpyHostToDevice,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in LUGpuKernelMod::Launch copy pivots array.");
|
||||
}
|
||||
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(d_work_);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
|
||||
kernel_node_ = kernel_node;
|
||||
// 1. get CuSolver Dense matrix handler
|
||||
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) override {
|
||||
MS_EXCEPTION_IF_NULL(base_operator);
|
||||
kernel_name_ = base_operator->name();
|
||||
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCusolverDnHandle();
|
||||
auto shape_signed = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
if (IsDynamic(shape_signed)) {
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
int Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs,
|
||||
const std::map<uint32_t, tensor::TensorPtr> &inputsOnHost) override {
|
||||
if (auto ret = KernelMod::Resize(base_operator, inputs, outputs, inputsOnHost); ret != KRET_OK) {
|
||||
return ret;
|
||||
}
|
||||
batch_size_ = 1;
|
||||
auto shape_signed = inputs[kIndex0]->GetShapeVector();
|
||||
auto in_shape = Convert2SizeT(shape_signed);
|
||||
// 2. check input shape not null
|
||||
is_null_input_ = CHECK_SHAPE_NULL(in_shape, kernel_name_, "input");
|
||||
if (is_null_input_) {
|
||||
InitSizeLists();
|
||||
return true;
|
||||
return KRET_OK;
|
||||
}
|
||||
// 3. calculate input size
|
||||
if (!InitInputSize(in_shape)) {
|
||||
MS_LOG(EXCEPTION) << "For 'PureCholeskyGpuKernel', input shape init failed.";
|
||||
MS_LOG(ERROR) << "For 'PureCholeskyGpuKernel', input shape init failed.";
|
||||
return KRET_RESIZE_FAILED;
|
||||
}
|
||||
return true;
|
||||
return KRET_OK;
|
||||
}
|
||||
|
||||
std::vector<KernelAttr> GetOpSupport() override {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
};
|
||||
return support_list;
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -198,7 +222,7 @@ class LUGpuKernelMod : public DeprecatedNativeGpuKernelMod {
|
|||
return true;
|
||||
}
|
||||
|
||||
void InitSizeLists() override {
|
||||
void InitSizeLists() {
|
||||
size_t input_size = batch_size_ * lu_row_ * lu_col_ * unit_size_;
|
||||
input_size_list_.push_back(input_size);
|
||||
|
||||
|
@ -244,4 +268,4 @@ class LUGpuKernelMod : public DeprecatedNativeGpuKernelMod {
|
|||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_LU_GPU_KERNEL_H_
|
||||
#endif // MINDSPORE_CCSRC_PLUGIN_DEVICE_GPU_KERNEL_MATH_LU_GPU_KERNEL_H_
|
||||
|
|
|
@ -0,0 +1,82 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/lu.h"
|
||||
#include <algorithm>
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/ops/primitive_infer_map.h"
|
||||
#include "mindapi/src/helper.h"
|
||||
#include "common/graph_kernel/core/graph_kernel_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
constexpr size_t kLUInputsNum = 1;
|
||||
constexpr size_t kXDim = 2;
|
||||
constexpr size_t kLastDim = 1;
|
||||
constexpr size_t kPenultimateDim = 2;
|
||||
abstract::TupleShapePtr LUInferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
auto x_shape_map = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape());
|
||||
auto x_shape = x_shape_map[kShape];
|
||||
|
||||
auto x_output = std::make_shared<abstract::Shape>(x_shape);
|
||||
if (IsDynamicRank(x_shape)) {
|
||||
return std::make_shared<abstract::TupleShape>(std::vector<abstract::BaseShapePtr>{x_output, x_output, x_output});
|
||||
}
|
||||
|
||||
size_t x_shape_size = x_shape.size();
|
||||
if (x_shape_size < kXDim) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << prim_name << "',"
|
||||
<< " the dimension of hashmap must be greater than or equal to 2, but got: "
|
||||
<< x_shape_size << ".";
|
||||
}
|
||||
|
||||
auto k_shape = std::min(x_shape[x_shape_size - kLastDim], x_shape[x_shape_size - kPenultimateDim]);
|
||||
ShapeVector top_k_shape(x_shape.begin(), x_shape.end() - kPenultimateDim);
|
||||
ShapeVector pivots_shape = top_k_shape;
|
||||
pivots_shape.push_back(k_shape);
|
||||
ShapeVector permutation_shape = pivots_shape;
|
||||
permutation_shape.push_back(k_shape);
|
||||
|
||||
auto pivots_output = std::make_shared<abstract::Shape>(pivots_shape);
|
||||
auto permutation_output = std::make_shared<abstract::Shape>(permutation_shape);
|
||||
return std::make_shared<abstract::TupleShape>(
|
||||
std::vector<abstract::BaseShapePtr>{x_output, pivots_output, permutation_output});
|
||||
}
|
||||
|
||||
TuplePtr LUInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
auto x_type = input_args[0]->BuildType();
|
||||
return std::make_shared<Tuple>(std::vector<TypePtr>{x_type, kInt32, kInt32});
|
||||
}
|
||||
} // namespace
|
||||
|
||||
AbstractBasePtr LUInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, kLUInputsNum, primitive->name());
|
||||
auto infer_type = LUInferType(primitive, input_args);
|
||||
auto infer_shape = LUInferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(infer_shape, infer_type);
|
||||
}
|
||||
|
||||
MIND_API_OPERATOR_IMPL(LU, BaseOperator);
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(LU, prim::kPrimLU, LUInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,42 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_LU_H_
|
||||
#define MINDSPORE_CORE_OPS_LU_H_
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "ops/base_operator.h"
|
||||
#include "mindapi/base/types.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameLU = "LU";
|
||||
class MIND_API LU : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(LU);
|
||||
LU() : BaseOperator(kNameLU) { InitIOName({"x"}, {"lu", "pivots", "permutation"}); }
|
||||
};
|
||||
abstract::AbstractBasePtr LUInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
using PrimLUPtr = std::shared_ptr<LU>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CORE_OPS_LU_H_
|
Loading…
Reference in New Issue