commit
1a3c06a948
|
@ -1,55 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""
|
||||
network config setting, will be used in main.py
|
||||
"""
|
||||
|
||||
from easydict import EasyDict as edict
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig
|
||||
bert_cfg = edict({
|
||||
'epoch_size': 10,
|
||||
'num_warmup_steps': 0,
|
||||
'start_learning_rate': 1e-4,
|
||||
'end_learning_rate': 1,
|
||||
'decay_steps': 1000,
|
||||
'power': 10.0,
|
||||
'save_checkpoint_steps': 2000,
|
||||
'keep_checkpoint_max': 10,
|
||||
'checkpoint_prefix': "checkpoint_bert",
|
||||
'DATA_DIR' = "/your/path/examples.tfrecord"
|
||||
'SCHEMA_DIR' = "/your/path/datasetSchema.json"
|
||||
'bert_config': BertConfig(
|
||||
batch_size=16,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
)
|
||||
})
|
|
@ -0,0 +1,57 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""
|
||||
network config setting, will be used in train.py
|
||||
"""
|
||||
|
||||
from easydict import EasyDict as edict
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig
|
||||
bert_train_cfg = edict({
|
||||
'epoch_size': 10,
|
||||
'num_warmup_steps': 0,
|
||||
'start_learning_rate': 1e-4,
|
||||
'end_learning_rate': 0.0,
|
||||
'decay_steps': 1000,
|
||||
'power': 10.0,
|
||||
'save_checkpoint_steps': 2000,
|
||||
'keep_checkpoint_max': 10,
|
||||
'checkpoint_prefix': "checkpoint_bert",
|
||||
# please add your own dataset path
|
||||
'DATA_DIR': "/your/path/examples.tfrecord",
|
||||
# please add your own dataset schema path
|
||||
'SCHEMA_DIR': "/your/path/datasetSchema.json"
|
||||
})
|
||||
bert_net_cfg = BertConfig(
|
||||
batch_size=16,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
)
|
|
@ -14,7 +14,8 @@
|
|||
# ============================================================================
|
||||
|
||||
"""
|
||||
NEZHA (NEural contextualiZed representation for CHinese lAnguage understanding) is the Chinese pretrained language model currently based on BERT developed by Huawei.
|
||||
NEZHA (NEural contextualiZed representation for CHinese lAnguage understanding) is the Chinese pretrained language
|
||||
model currently based on BERT developed by Huawei.
|
||||
1. Prepare data
|
||||
Following the data preparation as in BERT, run command as below to get dataset for training:
|
||||
python ./create_pretraining_data.py \
|
||||
|
@ -28,35 +29,29 @@ Following the data preparation as in BERT, run command as below to get dataset f
|
|||
--random_seed=12345 \
|
||||
--dupe_factor=5
|
||||
2. Pretrain
|
||||
First, prepare the distributed training environment, then adjust configurations in config.py, finally run main.py.
|
||||
First, prepare the distributed training environment, then adjust configurations in config.py, finally run train.py.
|
||||
"""
|
||||
|
||||
import os
|
||||
import pytest
|
||||
import numpy as np
|
||||
from numpy import allclose
|
||||
from config import bert_cfg as cfg
|
||||
import mindspore.common.dtype as mstype
|
||||
from config import bert_train_cfg, bert_net_cfg
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore._c_dataengine as deMap
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertNetworkWithLoss, BertTrainOneStepCell
|
||||
from mindspore.nn.optim import Lamb
|
||||
from mindspore import log as logger
|
||||
_current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
DATA_DIR = [cfg.DATA_DIR]
|
||||
SCHEMA_DIR = cfg.SCHEMA_DIR
|
||||
|
||||
def me_de_train_dataset(batch_size):
|
||||
"""test me de train dataset"""
|
||||
def create_train_dataset(batch_size):
|
||||
"""create train dataset"""
|
||||
# apply repeat operations
|
||||
repeat_count = cfg.epoch_size
|
||||
ds = de.StorageDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"next_sentence_labels", "masked_lm_positions",
|
||||
"masked_lm_ids", "masked_lm_weights"])
|
||||
repeat_count = bert_train_cfg.epoch_size
|
||||
ds = de.StorageDataset([bert_train_cfg.DATA_DIR], bert_train_cfg.SCHEMA_DIR,
|
||||
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
|
||||
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"])
|
||||
type_cast_op = deMap.TypeCastOp("int32")
|
||||
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
||||
|
@ -69,43 +64,32 @@ def me_de_train_dataset(batch_size):
|
|||
ds = ds.repeat(repeat_count)
|
||||
return ds
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
"""weight variable"""
|
||||
np.random.seed(1)
|
||||
ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32)
|
||||
return Tensor(ones)
|
||||
|
||||
|
||||
class ModelCallback(Callback):
|
||||
def __init__(self):
|
||||
super(ModelCallback, self).__init__()
|
||||
self.loss_list = []
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
self.loss_list.append(cb_params.net_outputs.asnumpy()[0])
|
||||
logger.info("epoch: {}, outputs are {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
|
||||
|
||||
def test_bert_tdt():
|
||||
"""test bert tdt"""
|
||||
def train_bert():
|
||||
"""train bert"""
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_context(device_target="Ascend")
|
||||
context.set_context(enable_task_sink=True)
|
||||
context.set_context(enable_loop_sink=True)
|
||||
context.set_context(enable_mem_reuse=True)
|
||||
parallel_callback = ModelCallback()
|
||||
ds = me_de_train_dataset(cfg.bert_config.batch_size)
|
||||
config = cfg.bert_config
|
||||
netwithloss = BertNetworkWithLoss(config, True)
|
||||
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=cfg.decay_steps, start_learning_rate=cfg.start_learning_rate,
|
||||
end_learning_rate=cfg.end_learning_rate, power=cfg.power, warmup_steps=cfg.num_warmup_steps, decay_filter=lambda x: False)
|
||||
ds = create_train_dataset(bert_net_cfg.batch_size)
|
||||
netwithloss = BertNetworkWithLoss(bert_net_cfg, True)
|
||||
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=bert_train_cfg.decay_steps,
|
||||
start_learning_rate=bert_train_cfg.start_learning_rate,
|
||||
end_learning_rate=bert_train_cfg.end_learning_rate, power=bert_train_cfg.power,
|
||||
warmup_steps=bert_train_cfg.num_warmup_steps, decay_filter=lambda x: False)
|
||||
netwithgrads = BertTrainOneStepCell(netwithloss, optimizer=optimizer)
|
||||
netwithgrads.set_train(True)
|
||||
model = Model(netwithgrads)
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
ckpoint_cb = ModelCheckpoint(prefix=cfg.checkpoint_prefix, config=config_ck)
|
||||
model.train(ds.get_repeat_count(), ds, callbacks=[parallel_callback, ckpoint_cb], dataset_sink_mode=False)
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=bert_train_cfg.save_checkpoint_steps,
|
||||
keep_checkpoint_max=bert_train_cfg.keep_checkpoint_max)
|
||||
ckpoint_cb = ModelCheckpoint(prefix=bert_train_cfg.checkpoint_prefix, config=config_ck)
|
||||
model.train(ds.get_repeat_count(), ds, callbacks=[LossMonitor(), ckpoint_cb], dataset_sink_mode=False)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_tdt()
|
||||
train_bert()
|
Loading…
Reference in New Issue