diff --git a/tests/cxx_st/dataset/test_de.cc b/tests/cxx_st/dataset/test_de.cc index 510324867ee..63636546486 100644 --- a/tests/cxx_st/dataset/test_de.cc +++ b/tests/cxx_st/dataset/test_de.cc @@ -21,7 +21,7 @@ #include "minddata/dataset/include/vision.h" #include "minddata/dataset/kernels/tensor_op.h" #include "include/api/model.h" -#include "include/api/serializations.h" +#include "include/api/serialization.h" #include "include/api/context.h" using namespace mindspore::api; @@ -86,13 +86,13 @@ TEST_F(TestDE, TestDvpp) { TEST_F(TestDE, TestYoloV3_with_Dvpp) { std::vector> images; - MIndDataEager::LoadImageFromDir("/home/lizhenglong/val2014", &images); + MindDataEager::LoadImageFromDir("/home/lizhenglong/val2014", &images); MindDataEager SingleOp({DvppDecodeResizeCropJpeg({416, 416}, {416, 416})}); constexpr auto yolo_mindir_file = "/home/zhoufeng/yolov3/yolov3_darknet53.mindir"; Context::Instance().SetDeviceTarget(kDeviceTypeAscend310).SetDeviceID(1); auto graph = Serialization::LoadModel(yolo_mindir_file, ModelType::kMindIR); Model yolov3((GraphCell(graph))); - Status ret = yolov3.Build({{kMOdelOptionInsertOpCfgPath, "/mnt/disk1/yolo_dvpp_result/aipp_resnet50.cfg"}}); + Status ret = yolov3.Build({{kModelOptionInsertOpCfgPath, "/mnt/disk1/yolo_dvpp_result/aipp_resnet50.cfg"}}); ASSERT_TRUE(ret == SUCCESS); std::vector names; @@ -107,8 +107,8 @@ TEST_F(TestDE, TestYoloV3_with_Dvpp) { for (auto &img : images) { img = SingleOp(img); std::vector input_shape = {416, 416}; - input.clear(); - inputs.emplace_back(img->data(), img->DataSize()); + inputs.clear(); + inputs.emplace_back(img->Data(), img->DataSize()); inputs.emplace_back(input_shape.data(), input_shape.size() * sizeof(float)); ret = yolov3.Predict(inputs, &outputs); for (size_t i = 0; i < outputs.size(); ++i) {