model zoo move to mindspore/model_zoo

This commit is contained in:
chenzomi 2020-06-01 09:47:19 +08:00
parent ded9608f6d
commit 193fd37a50
22 changed files with 434 additions and 38 deletions

View File

@ -39,10 +39,10 @@ config_gpu = ed({
"num_classes": 1000,
"image_height": 224,
"image_width": 224,
"batch_size": 64,
"batch_size": 150,
"epoch_size": 200,
"warmup_epochs": 4,
"lr": 0.5,
"warmup_epochs": 0,
"lr": 0.8,
"momentum": 0.9,
"weight_decay": 4e-5,
"label_smooth": 0.1,

View File

@ -20,20 +20,10 @@ from mindspore.ops.operations import TensorAdd
from mindspore import Parameter, Tensor
from mindspore.common.initializer import initializer
__all__ = ['MobileNetV2', 'mobilenet_v2']
__all__ = ['mobilenet_v2']
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
@ -55,6 +45,7 @@ class GlobalAvgPooling(nn.Cell):
Examples:
>>> GlobalAvgPooling()
"""
def __init__(self):
super(GlobalAvgPooling, self).__init__()
self.mean = P.ReduceMean(keep_dims=False)
@ -82,6 +73,7 @@ class DepthwiseConv(nn.Cell):
Examples:
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
"""
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
super(DepthwiseConv, self).__init__()
self.has_bias = has_bias
@ -126,14 +118,19 @@ class ConvBNReLU(nn.Cell):
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
def __init__(self, platform, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
if groups == 1:
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
padding=padding)
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding)
else:
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
if platform == "Ascend":
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
elif platform == "GPU":
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride,
group=in_planes, pad_mode='pad', padding=padding)
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
self.features = nn.SequentialCell(layers)
@ -158,7 +155,8 @@ class InvertedResidual(nn.Cell):
Examples:
>>> ResidualBlock(3, 256, 1, 1)
"""
def __init__(self, inp, oup, stride, expand_ratio):
def __init__(self, platform, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
@ -167,12 +165,14 @@ class InvertedResidual(nn.Cell):
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.append(ConvBNReLU(platform, inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
ConvBNReLU(platform, hidden_dim, hidden_dim,
stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
nn.Conv2d(hidden_dim, oup, kernel_size=1,
stride=1, has_bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.SequentialCell(layers)
@ -203,7 +203,8 @@ class MobileNetV2(nn.Cell):
Examples:
>>> MobileNetV2(num_classes=1000)
"""
def __init__(self, num_classes=1000, width_mult=1.,
def __init__(self, platform, num_classes=1000, width_mult=1.,
has_dropout=False, inverted_residual_setting=None, round_nearest=8):
super(MobileNetV2, self).__init__()
block = InvertedResidual
@ -226,16 +227,16 @@ class MobileNetV2(nn.Cell):
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2)]
features = [ConvBNReLU(platform, 3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in self.cfgs:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
features.append(block(platform, input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
features.append(ConvBNReLU(platform, input_channel, self.out_channels, kernel_size=1))
# make it nn.CellList
self.features = nn.SequentialCell(features)
# mobilenet head
@ -268,14 +269,19 @@ class MobileNetV2(nn.Cell):
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
m.weight.data.shape()).astype("float32")))
if m.bias is not None:
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
m.bias.set_parameter_data(
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
elif isinstance(m, nn.BatchNorm2d):
m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
m.gamma.set_parameter_data(
Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
m.beta.set_parameter_data(
Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
elif isinstance(m, nn.Dense):
m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape()).astype("float32")))
m.weight.set_parameter_data(Tensor(np.random.normal(
0, 0.01, m.weight.data.shape()).astype("float32")))
if m.bias is not None:
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
m.bias.set_parameter_data(
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
def mobilenet_v2(**kwargs):

View File

@ -205,7 +205,7 @@ if __name__ == '__main__':
config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config_gpu.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(
prefix="mobilenet", directory=config_gpu.save_checkpoint_path, config=config_ck)
prefix="mobilenetV2", directory=config_gpu.save_checkpoint_path, config=config_ck)
cb += [ckpt_cb]
# begine train
model.train(epoch_size, dataset, callbacks=cb)
@ -265,7 +265,7 @@ if __name__ == '__main__':
config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config_ascend.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(
prefix="mobilenet", directory=config_ascend.save_checkpoint_path, config=config_ck)
prefix="mobilenetV2", directory=config_ascend.save_checkpoint_path, config=config_ck)
cb += [ckpt_cb]
model.train(epoch_size, dataset, callbacks=cb)
else:

View File

@ -39,10 +39,10 @@ config_gpu = ed({
"num_classes": 1000,
"image_height": 224,
"image_width": 224,
"batch_size": 64,
"epoch_size": 300,
"batch_size": 150,
"epoch_size": 370,
"warmup_epochs": 4,
"lr": 0.5,
"lr": 1.54,
"momentum": 0.9,
"weight_decay": 4e-5,
"label_smooth": 0.1,

View File

@ -0,0 +1,390 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MobileNetV3 model define"""
from functools import partial
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
__all__ = ['mobilenet_v3_large',
'mobilenet_v3_small']
def _make_divisible(x, divisor=8):
return int(np.ceil(x * 1. / divisor) * divisor)
class Activation(nn.Cell):
"""
Activation definition.
Args:
act_func(string): activation name.
Returns:
Tensor, output tensor.
"""
def __init__(self, act_func):
super(Activation, self).__init__()
if act_func == 'relu':
self.act = nn.ReLU()
elif act_func == 'relu6':
self.act = nn.ReLU6()
elif act_func in ('hsigmoid', 'hard_sigmoid'):
self.act = nn.HSigmoid()
elif act_func in ('hswish', 'hard_swish'):
self.act = nn.HSwish()
else:
raise NotImplementedError
def construct(self, x):
return self.act(x)
class GlobalAvgPooling(nn.Cell):
"""
Global avg pooling definition.
Args:
Returns:
Tensor, output tensor.
Examples:
>>> GlobalAvgPooling()
"""
def __init__(self, keep_dims=False):
super(GlobalAvgPooling, self).__init__()
self.mean = P.ReduceMean(keep_dims=keep_dims)
def construct(self, x):
x = self.mean(x, (2, 3))
return x
class SE(nn.Cell):
"""
SE warpper definition.
Args:
num_out (int): Output channel.
ratio (int): middle output ratio.
Returns:
Tensor, output tensor.
Examples:
>>> SE(4)
"""
def __init__(self, num_out, ratio=4):
super(SE, self).__init__()
num_mid = _make_divisible(num_out // ratio)
self.pool = GlobalAvgPooling(keep_dims=True)
self.conv1 = nn.Conv2d(in_channels=num_out, out_channels=num_mid,
kernel_size=1, has_bias=True, pad_mode='pad')
self.act1 = Activation('relu')
self.conv2 = nn.Conv2d(in_channels=num_mid, out_channels=num_out,
kernel_size=1, has_bias=True, pad_mode='pad')
self.act2 = Activation('hsigmoid')
self.mul = P.Mul()
def construct(self, x):
out = self.pool(x)
out = self.conv1(out)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.mul(x, out)
return out
class Unit(nn.Cell):
"""
Unit warpper definition.
Args:
num_in (int): Input channel.
num_out (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size.
padding (int): Padding number.
num_groups (int): Output num group.
use_act (bool): Used activation or not.
act_type (string): Activation type.
Returns:
Tensor, output tensor.
Examples:
>>> Unit(3, 3)
"""
def __init__(self, num_in, num_out, kernel_size=1, stride=1, padding=0, num_groups=1,
use_act=True, act_type='relu'):
super(Unit, self).__init__()
self.conv = nn.Conv2d(in_channels=num_in,
out_channels=num_out,
kernel_size=kernel_size,
stride=stride,
padding=padding,
group=num_groups,
has_bias=False,
pad_mode='pad')
self.bn = nn.BatchNorm2d(num_out)
self.use_act = use_act
self.act = Activation(act_type) if use_act else None
def construct(self, x):
out = self.conv(x)
out = self.bn(out)
if self.use_act:
out = self.act(out)
return out
class ResUnit(nn.Cell):
"""
ResUnit warpper definition.
Args:
num_in (int): Input channel.
num_mid (int): Middle channel.
num_out (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size.
act_type (str): Activation type.
use_se (bool): Use SE warpper or not.
Returns:
Tensor, output tensor.
Examples:
>>> ResUnit(16, 3, 1, 1)
"""
def __init__(self, num_in, num_mid, num_out, kernel_size, stride=1, act_type='relu', use_se=False):
super(ResUnit, self).__init__()
self.use_se = use_se
self.first_conv = (num_out != num_mid)
self.use_short_cut_conv = True
if self.first_conv:
self.expand = Unit(num_in, num_mid, kernel_size=1,
stride=1, padding=0, act_type=act_type)
else:
self.expand = None
self.conv1 = Unit(num_mid, num_mid, kernel_size=kernel_size, stride=stride,
padding=self._get_pad(kernel_size), act_type=act_type, num_groups=num_mid)
if use_se:
self.se = SE(num_mid)
self.conv2 = Unit(num_mid, num_out, kernel_size=1, stride=1,
padding=0, act_type=act_type, use_act=False)
if num_in != num_out or stride != 1:
self.use_short_cut_conv = False
self.add = P.TensorAdd() if self.use_short_cut_conv else None
def construct(self, x):
if self.first_conv:
out = self.expand(x)
else:
out = x
out = self.conv1(out)
if self.use_se:
out = self.se(out)
out = self.conv2(out)
if self.use_short_cut_conv:
out = self.add(x, out)
return out
def _get_pad(self, kernel_size):
"""set the padding number"""
pad = 0
if kernel_size == 1:
pad = 0
elif kernel_size == 3:
pad = 1
elif kernel_size == 5:
pad = 2
elif kernel_size == 7:
pad = 3
else:
raise NotImplementedError
return pad
class MobileNetV3(nn.Cell):
"""
MobileNetV3 architecture.
Args:
model_cfgs (Cell): number of classes.
num_classes (int): Output number classes.
multiplier (int): Channels multiplier for round to 8/16 and others. Default is 1.
final_drop (float): Dropout number.
round_nearest (list): Channel round to . Default is 8.
Returns:
Tensor, output tensor.
Examples:
>>> MobileNetV3(num_classes=1000)
"""
def __init__(self, model_cfgs, num_classes=1000, multiplier=1., final_drop=0., round_nearest=8):
super(MobileNetV3, self).__init__()
self.cfgs = model_cfgs['cfg']
self.inplanes = 16
self.features = []
first_conv_in_channel = 3
first_conv_out_channel = _make_divisible(multiplier * self.inplanes)
self.features.append(nn.Conv2d(in_channels=first_conv_in_channel,
out_channels=first_conv_out_channel,
kernel_size=3, padding=1, stride=2,
has_bias=False, pad_mode='pad'))
self.features.append(nn.BatchNorm2d(first_conv_out_channel))
self.features.append(Activation('hswish'))
for layer_cfg in self.cfgs:
self.features.append(self._make_layer(kernel_size=layer_cfg[0],
exp_ch=_make_divisible(multiplier * layer_cfg[1]),
out_channel=_make_divisible(multiplier * layer_cfg[2]),
use_se=layer_cfg[3],
act_func=layer_cfg[4],
stride=layer_cfg[5]))
output_channel = _make_divisible(multiplier * model_cfgs["cls_ch_squeeze"])
self.features.append(nn.Conv2d(in_channels=_make_divisible(multiplier * self.cfgs[-1][2]),
out_channels=output_channel,
kernel_size=1, padding=0, stride=1,
has_bias=False, pad_mode='pad'))
self.features.append(nn.BatchNorm2d(output_channel))
self.features.append(Activation('hswish'))
self.features.append(GlobalAvgPooling(keep_dims=True))
self.features.append(nn.Conv2d(in_channels=output_channel,
out_channels=model_cfgs['cls_ch_expand'],
kernel_size=1, padding=0, stride=1,
has_bias=False, pad_mode='pad'))
self.features.append(Activation('hswish'))
if final_drop > 0:
self.features.append((nn.Dropout(final_drop)))
# make it nn.CellList
self.features = nn.SequentialCell(self.features)
self.output = nn.Conv2d(in_channels=model_cfgs['cls_ch_expand'],
out_channels=num_classes,
kernel_size=1, has_bias=True, pad_mode='pad')
self.squeeze = P.Squeeze(axis=(2, 3))
self._initialize_weights()
def construct(self, x):
x = self.features(x)
x = self.output(x)
x = self.squeeze(x)
return x
def _make_layer(self, kernel_size, exp_ch, out_channel, use_se, act_func, stride=1):
mid_planes = exp_ch
out_planes = out_channel
#num_in, num_mid, num_out, kernel_size, stride=1, act_type='relu', use_se=False):
layer = ResUnit(self.inplanes, mid_planes, out_planes,
kernel_size, stride=stride, act_type=act_func, use_se=use_se)
self.inplanes = out_planes
return layer
def _initialize_weights(self):
"""
Initialize weights.
Args:
Returns:
None.
Examples:
>>> _initialize_weights()
"""
for _, m in self.cells_and_names():
if isinstance(m, (nn.Conv2d)):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
m.weight.data.shape()).astype("float32")))
if m.bias is not None:
m.bias.set_parameter_data(
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
elif isinstance(m, nn.BatchNorm2d):
m.gamma.set_parameter_data(
Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
m.beta.set_parameter_data(
Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
elif isinstance(m, nn.Dense):
m.weight.set_parameter_data(Tensor(np.random.normal(
0, 0.01, m.weight.data.shape()).astype("float32")))
if m.bias is not None:
m.bias.set_parameter_data(
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
def mobilenet_v3(model_name, **kwargs):
"""
Constructs a MobileNet V2 model
"""
model_cfgs = {
"large": {
"cfg": [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', 2],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', 2],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hswish', 2],
[3, 200, 80, False, 'hswish', 1],
[3, 184, 80, False, 'hswish', 1],
[3, 184, 80, False, 'hswish', 1],
[3, 480, 112, True, 'hswish', 1],
[3, 672, 112, True, 'hswish', 1],
[5, 672, 160, True, 'hswish', 2],
[5, 960, 160, True, 'hswish', 1],
[5, 960, 160, True, 'hswish', 1]],
"cls_ch_squeeze": 960,
"cls_ch_expand": 1280,
},
"small": {
"cfg": [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', 2],
[3, 72, 24, False, 'relu', 2],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hswish', 2],
[5, 240, 40, True, 'hswish', 1],
[5, 240, 40, True, 'hswish', 1],
[5, 120, 48, True, 'hswish', 1],
[5, 144, 48, True, 'hswish', 1],
[5, 288, 96, True, 'hswish', 2],
[5, 576, 96, True, 'hswish', 1],
[5, 576, 96, True, 'hswish', 1]],
"cls_ch_squeeze": 576,
"cls_ch_expand": 1280,
}
}
return MobileNetV3(model_cfgs[model_name], **kwargs)
mobilenet_v3_large = partial(mobilenet_v3, model_name="large")
mobilenet_v3_small = partial(mobilenet_v3, model_name="small")

View File

@ -205,7 +205,7 @@ if __name__ == '__main__':
config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config_gpu.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(
prefix="mobilenet", directory=config_gpu.save_checkpoint_path, config=config_ck)
prefix="mobilenetV3", directory=config_gpu.save_checkpoint_path, config=config_ck)
cb += [ckpt_cb]
# begine train
model.train(epoch_size, dataset, callbacks=cb)
@ -265,7 +265,7 @@ if __name__ == '__main__':
config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config_ascend.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(
prefix="mobilenet", directory=config_ascend.save_checkpoint_path, config=config_ck)
prefix="mobilenetV3", directory=config_ascend.save_checkpoint_path, config=config_ck)
cb += [ckpt_cb]
model.train(epoch_size, dataset, callbacks=cb)
else: