ops doc bugfix
This commit is contained in:
parent
73b0a6ebd9
commit
192e851fa2
|
@ -140,6 +140,7 @@ Element-by-Element Operations
|
|||
mindspore.ops.invert
|
||||
mindspore.ops.lerp
|
||||
mindspore.ops.log
|
||||
mindspore.ops.log1p
|
||||
mindspore.ops.logical_and
|
||||
mindspore.ops.logical_not
|
||||
mindspore.ops.logical_or
|
||||
|
@ -344,6 +345,7 @@ Array Operation
|
|||
mindspore.ops.gather_d
|
||||
mindspore.ops.gather_elements
|
||||
mindspore.ops.gather_nd
|
||||
mindspore.ops.gumbel_softmax
|
||||
mindspore.ops.index_fill
|
||||
mindspore.ops.intopk
|
||||
mindspore.ops.masked_fill
|
||||
|
@ -367,6 +369,7 @@ Array Operation
|
|||
mindspore.ops.space_to_batch_nd
|
||||
mindspore.ops.sparse_segment_mean
|
||||
mindspore.ops.split
|
||||
mindspore.ops.stack
|
||||
mindspore.ops.tensor_scatter_add
|
||||
mindspore.ops.tensor_scatter_min
|
||||
mindspore.ops.tensor_scatter_max
|
||||
|
@ -382,8 +385,8 @@ Array Operation
|
|||
mindspore.ops.unique
|
||||
mindspore.ops.unique_consecutive
|
||||
mindspore.ops.unique_with_pad
|
||||
mindspore.ops.gumbel_softmax
|
||||
mindspore.ops.unsorted_segment_sum
|
||||
mindspore.ops.unstack
|
||||
|
||||
.. list-table::
|
||||
:widths: 50 50
|
||||
|
@ -403,8 +406,6 @@ Array Operation
|
|||
- Refer to :class:`mindspore.ops.Sort`.
|
||||
* - mindspore.ops.squeeze
|
||||
- Refer to :class:`mindspore.ops.Squeeze`.
|
||||
* - mindspore.ops.stack
|
||||
- Refer to :class:`mindspore.ops.Stack`.
|
||||
* - mindspore.ops.strided_slice
|
||||
- Refer to :class:`mindspore.ops.StridedSlice`.
|
||||
* - mindspore.ops.tensor_scatter_update
|
||||
|
|
|
@ -686,6 +686,8 @@ class Tensor(Tensor_):
|
|||
r"""
|
||||
Returns arctangent of x/y element-wise.
|
||||
|
||||
`x` refer to self tensor.
|
||||
|
||||
It returns :math:`\theta\ \in\ [-\pi, \pi]`
|
||||
such that :math:`x = r*\sin(\theta), y = r*\cos(\theta)`, where :math:`r = \sqrt{x^2 + y^2}`.
|
||||
|
||||
|
@ -694,8 +696,6 @@ class Tensor(Tensor_):
|
|||
the relatively highest precision data type.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
||||
y (Tensor): The input tensor. It has the same shape with `x`.
|
||||
|
||||
Returns:
|
||||
|
@ -1321,14 +1321,11 @@ class Tensor(Tensor_):
|
|||
r"""
|
||||
Returns the natural logarithm of one plus the input tensor element-wise.
|
||||
|
||||
`x` refer to self tensor.
|
||||
|
||||
.. math::
|
||||
out_i = {log_e}(x_i + 1)
|
||||
|
||||
Args:
|
||||
- **x** (Tensor) - The input tensor. With float16 or float32 data type.
|
||||
The value must be greater than -1.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same shape as the `x`.
|
||||
|
||||
|
|
Loading…
Reference in New Issue