!23135 ghostnet to master

Merge pull request !23135 from yangyanjuan/master
This commit is contained in:
i-robot 2021-09-13 02:54:42 +00:00 committed by Gitee
commit 1794923286
12 changed files with 640 additions and 32 deletions

View File

@ -22,6 +22,7 @@
- [结果](#结果-1)
- [推理过程](#推理过程)
- [导出MindIR](#导出MindIR)
- [在Ascend310执行推理](#在Ascend310执行推理)
- [结果](#结果)
- [模型描述](#模型描述)
- [性能](#性能)
@ -98,17 +99,32 @@ GhostNet的总体网络架构如下[链接](https://arxiv.org/pdf/1911.11907.
```text
└──ghostnet
├── README.md
├── scripts
├── run_distribute_train.sh # 启动Ascend分布式训练8卡
├── run_eval.sh # 启动Ascend评估
└── run_standalone_train.sh # 启动Ascend单机训练单卡
├── ascend310_infer # ascend310推理
├── inc
└── utils.h # ascend310推理
├── src
├── build.sh # ascend310推理
├── CMakeLists.txt # ascend310推理
├── main.cc # ascend310推理
└── utils.cc # ascend310推理
├── scripts
├── run_distribute_train.sh # 启动Ascend分布式训练8卡
├── run_eval.sh # 启动Ascend评估
├── run_infer_310.sh # 启动Ascend310推理
└── run_standalone_train.sh # 启动Ascend单机训练单卡
├── src
├── config.py # 参数配置
├── dataset.py # 数据预处理
├── CrossEntropySmooth.py # ImageNet2012数据集的损失定义
├── lr_generator.py # 生成每个步骤的学习率
└── ghostnet.py # ghostnet网络
├── ghostnet600.py
├── launch.py
└── ghostnet.py # ghostnet网络
├── eval.py # 评估网络
├── create_imagenet2012_label.py # 创建ImageNet2012标签
├── export.py # 导出MindIR模型
├── postprocess.py # 310推理的后期处理
├── requirements.txt # 需求文件
└── train.py # 训练网络
```
@ -147,10 +163,10 @@ GhostNet的总体网络架构如下[链接](https://arxiv.org/pdf/1911.11907.
```Shell
# 分布式训练
用法sh run_distribute_train.sh [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](可选)
用法:sh run_distribute_train.sh [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](可选)
# 单机训练
用法sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_CKPT_PATH](可选)
用法:sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_CKPT_PATH](可选)
```
@ -219,9 +235,25 @@ python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [
参数ckpt_file为必填项
`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中选择。
## 在Ascend310执行推理
在执行推理前, mindir文件必须通过export.py脚本导出。以下展示了使用mindir模型执行推理的示例。目前仅支持batch_Size为1的推理。
```shell
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
```
- DEVICE_ID 可选默认值为0。
## 结果
导出“.mindir”文件可在当前目录查看
推理结果保存在脚本执行的当前路径, 你可以在acc.log中看到以下精度计算结果。
- 使用ImageNet2012数据集评估ghostnet
```shell
Total data: 50000, top1 accuracy: 0.73816, top5 accuracy: 0.9178.
```
# 模型描述
@ -253,4 +285,4 @@ dataset.py中设置了“create_dataset”函数内的种子同时还使用
# ModelZoo主页
请浏览官网[主页](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)。
请浏览官网[主页](https://gitee.com/mindspore/mindspore/tree/r1.3/model_zoo)。

View File

@ -0,0 +1,33 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
std::vector<std::string> GetAllFiles(std::string dir_name);
#endif

View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.14.1)
project(MindSporeCxxTestcase[CXX])
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT}/../)
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main main.cc utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)

View File

@ -0,0 +1,19 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# shellcheck disable=SC2006
cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

View File

@ -0,0 +1,141 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/dataset/vision_ascend.h"
#include "include/dataset/execute.h"
#include "include/dataset/transforms.h"
#include "include/dataset/vision.h"
#include "inc/utils.h"
using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::CenterCrop;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::TensorTransform;
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::dataset::Execute;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
auto all_files = GetAllFiles(FLAGS_dataset_path);
if (all_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}
std::vector<MSTensor> modelInputs = model.GetInputs();
std::map<double, double> costTime_map;
size_t size = all_files.size();
std::shared_ptr<TensorTransform> decode = std::make_shared<Decode>();
std::shared_ptr<TensorTransform> resize = std::make_shared<Resize>(std::vector<int>{256});
std::shared_ptr<TensorTransform> centercrop = std::make_shared<CenterCrop>(std::vector<int>{224});
std::shared_ptr<TensorTransform> normalize = std::make_shared<Normalize>(
std::vector<float>{123.675, 116.28, 103.53}, std::vector<float>{58.395, 57.12, 57.375});
std::shared_ptr<TensorTransform> hwc2chw = std::make_shared<HWC2CHW>();
std::vector<std::shared_ptr<TensorTransform>> trans_list;
trans_list = {decode, resize, centercrop, normalize, hwc2chw};
mindspore::dataset::Execute SingleOp(trans_list);
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << all_files[i] <<std::endl;
MSTensor image = ReadFileToTensor(all_files[i]);
SingleOp(image, &image);
inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(),
image.Data().get(), image.DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << all_files[i] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(all_files[i], outputs);
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
average += iter->second - iter->first;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}

View File

@ -0,0 +1,145 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> dirs;
std::vector<std::string> files;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == "..") {
continue;
} else if (filename->d_type == DT_DIR) {
dirs.emplace_back(std::string(dirName) + "/" + filename->d_name);
} else if (filename->d_type == DT_REG) {
files.emplace_back(std::string(dirName) + "/" + filename->d_name);
} else {
continue;
}
}
for (auto d : dirs) {
dir = OpenDir(d);
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
files.emplace_back(std::string(d) + "/" + filename->d_name);
}
}
std::sort(files.begin(), files.end());
for (auto &f : files) {
std::cout << "image file: " << f << std::endl;
}
return files;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE *outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}

View File

@ -0,0 +1,56 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""create_imagenet2012_label"""
import os
import json
import argparse
parser = argparse.ArgumentParser(description="ghostnet imagenet2012 label")
parser.add_argument("--img_path", type=str, required=True, help="imagenet2012 file path.")
args = parser.parse_args()
def create_label(file_path):
"""
create_imagenet2012_label
Args:
file_path:
Returns:
"""
print("[WARNING] Create imagenet label. Currently only use for Imagenet2012!")
dirs = os.listdir(file_path)
file_list = []
for file in dirs:
file_list.append(file)
file_list = sorted(file_list)
total = 0
img_label = {}
for i, file_dir in enumerate(file_list):
files = os.listdir(os.path.join(file_path, file_dir))
for f in files:
img_label[f] = i
total += len(files)
with open("imagenet_label.json", "w+") as label:
json.dump(img_label, label)
print("[INFO] Completed! Total {} data.".format(total))
if __name__ == '__main__':
create_label(args.img_path)

View File

@ -40,4 +40,5 @@ if __name__ == '__main__':
net.set_train(False)
input_data = Tensor(np.zeros([1, 3, 224, 224]), ms.float32)
print(input_data.shape)
export(net, input_data, file_name='ghost', file_format=args.file_format)

View File

@ -0,0 +1,77 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""post process for 310 inference"""
import os
import json
import argparse
import numpy as np
batch_size = 1
parser = argparse.ArgumentParser(description="ghostnet inference")
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
parser.add_argument("--label_path", type=str, required=True, help="image file path.")
args = parser.parse_args()
def get_top5_acc(top5_arg, gt_class):
"""
get top5 accuracy
Args:
top5_arg:
gt_class:
Returns:
"""
sub_count = 0
for top5, gt in zip(top5_arg, gt_class):
if gt in top5:
sub_count += 1
return sub_count
def cal_acc_imagenet(result_path, label_path):
"""
top1 accuracy, top5 accuracy
Args:
result_path:
label_path:
Returns:
"""
files = os.listdir(result_path)
with open(label_path, "r") as label:
labels = json.load(label)
result_shape = (1, 1000)
top1 = 0
top5 = 0
total_data = len(files)
for file in files:
img_ids_name = file.split('_0.')[0]
data_path = os.path.join(result_path, img_ids_name + "_0.bin")
result = np.fromfile(data_path, dtype=np.float32).reshape(result_shape)
for batch in range(batch_size):
predict = np.argsort(-result[batch], axis=-1)
if labels[img_ids_name+".JPEG"] == predict[0]:
top1 += 1
if labels[img_ids_name+".JPEG"] in predict[:5]:
top5 += 1
print(f"Total data: {total_data}, top1 accuracy: {top1/total_data}, top5 accuracy: {top5/total_data}.")
if __name__ == '__main__':
cal_acc_imagenet(args.result_path, args.label_path)

View File

@ -0,0 +1,101 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# shellcheck disable=SC1073
if [[ $# -lt 2 || $# -gt 3 ]];then
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ];then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
data_path=$(get_real_path $2)
device_id=0
if [ $# == 3 ];then
device_id=$3
fi
echo "mindir name:""$model"
echo "dataset path:""$data_path"
echo "device id:""$device_id"
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ];then
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function compile_app() {
cd ../ascend310_infer/src/ || exit
if [ -f "Makefile" ]; then
make clean
fi
sh build.sh &> build.log
}
function infer() {
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
}
function cal_acc()
{
python3.7 ../create_imagenet2012_label.py --img_path=$data_path
python3.7 ../postprocess.py --result_path=./result_Files --label_path=./imagenet_label.json &> acc.log
}
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo "execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi

View File

@ -14,19 +14,20 @@
# ============================================================================
"""Data operations, will be used in train.py and eval.py"""
import os
from src.config import config
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
from mindspore.communication.management import get_rank, get_group_size
def create_dataset(dataset_path, do_train, target="Ascend"):
def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_id=0, batch_size=128):
"""
create a train or eval dataset
Args:
batch_size:
device_id:
infer_910:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
rank (int): The shard ID within num_shards (default=None).
@ -36,12 +37,16 @@ def create_dataset(dataset_path, do_train, target="Ascend"):
Returns:
dataset
"""
device_num = 1
device_id = device_id
if infer_910:
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE'))
if not do_train:
dataset_path = os.path.join(dataset_path, 'val')
else:
dataset_path = os.path.join(dataset_path, 'train')
if target == "Ascend":
device_num, rank_id = _get_rank_info()
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
@ -74,21 +79,5 @@ def create_dataset(dataset_path, do_train, target="Ascend"):
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
# apply batch operations
ds = ds.batch(config.batch_size, drop_remainder=True)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def _get_rank_info():
"""
get rank size and rank id
"""
rank_size = int(os.environ.get("RANK_SIZE", 1))
if rank_size > 1:
rank_size = get_group_size()
rank_id = get_rank()
else:
rank_size = 1
rank_id = 0
return rank_size, rank_id

View File

@ -16,12 +16,12 @@
import math
import numpy as np
def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
"""
generate learning rate array
Args:
global_step(int): total steps of the training
lr_init(float): init learning rate
lr_end(float): end learning rate
lr_max(float): max learning rate