!23670 [assistant][ops] add new dataset loading operator CoNLL2000ChunkingDataset

Merge pull request !23670 from 杨旭华/CoNLL2000ChunkingDataset
This commit is contained in:
i-robot 2021-12-22 01:50:12 +00:00 committed by Gitee
commit 14df5d3984
17 changed files with 1798 additions and 1 deletions

View File

@ -95,6 +95,7 @@
#include "minddata/dataset/engine/ir/datasetops/source/cityscapes_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/clue_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/coco_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/conll2000_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/csv_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/dbpedia_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/div2k_node.h"
@ -1033,6 +1034,14 @@ CocoDataset::CocoDataset(const std::vector<char> &dataset_dir, const std::vector
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
}
CoNLL2000Dataset::CoNLL2000Dataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
int64_t num_samples, ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<CoNLL2000Node>(CharToString(dataset_dir), CharToString(usage), num_samples, shuffle,
num_shards, shard_id, cache);
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
}
CSVDataset::CSVDataset(const std::vector<std::vector<char>> &dataset_files, char field_delim,
const std::vector<std::shared_ptr<CsvBase>> &column_defaults,
const std::vector<std::vector<char>> &column_names, int64_t num_samples, ShuffleMode shuffle,

View File

@ -32,6 +32,7 @@
#include "minddata/dataset/engine/ir/datasetops/source/cityscapes_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/clue_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/coco_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/conll2000_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/csv_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/dbpedia_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/div2k_node.h"
@ -159,6 +160,18 @@ PYBIND_REGISTER(CocoNode, 2, ([](const py::module *m) {
}));
}));
PYBIND_REGISTER(CoNLL2000Node, 2, ([](const py::module *m) {
(void)py::class_<CoNLL2000Node, DatasetNode, std::shared_ptr<CoNLL2000Node>>(
*m, "CoNLL2000Node", "to create a CoNLL2000Node")
.def(py::init([](std::string dataset_dir, std::string usage, int64_t num_samples, int32_t shuffle,
int32_t num_shards, int32_t shard_id) {
std::shared_ptr<CoNLL2000Node> conll2000 = std::make_shared<CoNLL2000Node>(
dataset_dir, usage, num_samples, toShuffleMode(shuffle), num_shards, shard_id, nullptr);
THROW_IF_ERROR(conll2000->ValidateParams());
return conll2000;
}));
}));
PYBIND_REGISTER(CSVNode, 2, ([](const py::module *m) {
(void)py::class_<CSVNode, DatasetNode, std::shared_ptr<CSVNode>>(*m, "CSVNode", "to create a CSVNode")
.def(py::init([](std::vector<std::string> csv_files, char field_delim, py::list column_defaults,

View File

@ -10,6 +10,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
cityscapes_op.cc
clue_op.cc
coco_op.cc
conll2000_op.cc
csv_op.cc
dbpedia_op.cc
div2k_op.cc

View File

@ -0,0 +1,181 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/datasetops/source/conll2000_op.h"
#include <algorithm>
#include <fstream>
#include <memory>
#include <string>
#include <utility>
#include "debug/common.h"
#include "minddata/dataset/core/config_manager.h"
#include "minddata/dataset/engine/datasetops/source/io_block.h"
#include "minddata/dataset/engine/execution_tree.h"
#include "minddata/dataset/util/random.h"
#include "minddata/dataset/util/wait_post.h"
#include "utils/file_utils.h"
namespace mindspore {
namespace dataset {
CoNLL2000Op::CoNLL2000Op(int32_t num_workers, int64_t total_rows, int32_t worker_connector_size,
std::unique_ptr<DataSchema> schema, const std::vector<std::string> &conll2000_file_list,
int32_t op_connector_size, bool shuffle_files, int32_t num_devices, int32_t device_id)
: TextFileOp(num_workers, total_rows, worker_connector_size, std::move(schema), conll2000_file_list,
op_connector_size, shuffle_files, num_devices, device_id) {}
// A print method typically used for debugging.
void CoNLL2000Op::Print(std::ostream &out, bool show_all) const {
if (!show_all) {
// Call the super class for displaying any common 1-liner info.
ParallelOp::Print(out, show_all);
// Then show any custom derived-internal 1-liner info for this op.
out << "\n";
} else {
// Call the super class for displaying any common detailed info.
ParallelOp::Print(out, show_all);
// Then show any custom derived-internal stuff.
out << "\nRow count: " << total_rows_ << "\nDevice id: " << device_id_ << "\nNumber of devices: " << num_devices_
<< "\nShuffle files: " << ((shuffle_files_) ? "yes" : "no") << "\nCoNLL2000 file list:\n";
for (size_t i = 0; i < text_files_list_.size(); ++i) {
out << " " << text_files_list_[i];
}
out << "\nData Schema:\n";
out << *data_schema_ << "\n\n";
}
}
Status CoNLL2000Op::LoadTensor(const std::vector<std::string> &column, TensorRow *out_row, size_t index) {
RETURN_UNEXPECTED_IF_NULL(out_row);
std::shared_ptr<Tensor> tensor;
RETURN_IF_NOT_OK(Tensor::CreateFromVector(column, &tensor));
(*out_row)[index] = std::move(tensor);
return Status::OK();
}
// Function to split string based on a character delimiter.
std::vector<std::string> CoNLL2000Op::Split(const std::string &s, char delim) {
std::vector<std::string> res;
std::stringstream ss(s);
std::string item;
while (getline(ss, item, delim)) {
res.push_back(item);
}
return res;
}
// Removes excess space before and after the string.
std::string CoNLL2000Op::Strip(const std::string &str) {
std::int64_t strlen = str.size();
std::int64_t i, j;
i = 0;
while (i < strlen && str[i] == ' ') {
i++;
}
j = strlen - 1;
while (j >= i && str[j] == ' ') {
j--;
}
j++;
if (i == 0 && j == strlen) {
return str;
} else {
return str.substr(i, j - i);
}
}
Status CoNLL2000Op::Load(const std::vector<std::string> &word, const std::vector<std::string> &pos_tag,
const std::vector<std::string> &chunk_tag, const std::string &file, int32_t worker_id) {
size_t row_line = 3;
TensorRow tRow(row_line, nullptr);
// Add file path info.
std::vector<std::string> file_path(row_line, file);
tRow.setPath(file_path);
size_t word_index = 0, pos_tag_index = 1, chunk_tag_index = 2;
RETURN_IF_NOT_OK(LoadTensor(word, &tRow, word_index));
RETURN_IF_NOT_OK(LoadTensor(pos_tag, &tRow, pos_tag_index));
RETURN_IF_NOT_OK(LoadTensor(chunk_tag, &tRow, chunk_tag_index));
RETURN_IF_NOT_OK(jagged_rows_connector_->Add(worker_id, std::move(tRow)));
return Status::OK();
}
Status CoNLL2000Op::LoadFile(const std::string &file, int64_t start_offset, int64_t end_offset, int32_t worker_id) {
auto realpath = FileUtils::GetRealPath(file.data());
if (!realpath.has_value()) {
MS_LOG(ERROR) << "Invalid file path, " << DatasetName() << " dataset dir: " << file << " does not exist.";
RETURN_STATUS_UNEXPECTED("Invalid file path, " + DatasetName() + " dataset dir: " + file + " does not exist.");
}
std::ifstream handle(realpath.value());
if (!handle.is_open()) {
RETURN_STATUS_UNEXPECTED("Invalid file, failed to open " + DatasetName() + ": " + file);
}
int64_t rows_total = 0;
std::string line;
std::vector<std::string> word_column;
std::vector<std::string> pos_tag_column;
std::vector<std::string> chunk_tag_column;
while (getline(handle, line)) {
if (line.empty() && rows_total < start_offset) {
continue;
}
// If read to the end offset of this file, break.
if (rows_total >= end_offset) {
if (word_column.size() != 0) {
Status s = Load(word_column, pos_tag_column, chunk_tag_column, file, worker_id);
if (s.IsError()) {
handle.close();
return s;
}
}
std::vector<std::string>().swap(word_column);
std::vector<std::string>().swap(pos_tag_column);
std::vector<std::string>().swap(chunk_tag_column);
break;
}
// Skip line before start offset.
if (rows_total < start_offset) {
rows_total++;
continue;
}
line = Strip(line);
if (line.empty() && rows_total >= start_offset) {
if (word_column.size() != 0) {
Status s = Load(word_column, pos_tag_column, chunk_tag_column, file, worker_id);
if (s.IsError()) {
handle.close();
return s;
}
}
std::vector<std::string>().swap(word_column);
std::vector<std::string>().swap(pos_tag_column);
std::vector<std::string>().swap(chunk_tag_column);
continue;
} else if (!line.empty() && rows_total >= start_offset) {
std::vector<std::string> column = Split(line, ' ');
size_t word_index = 0, pos_tag_index = 1, chunk_tag_index = 2;
word_column.push_back(column[word_index]);
pos_tag_column.push_back(column[pos_tag_index]);
chunk_tag_column.push_back(column[chunk_tag_index]);
}
rows_total++;
}
handle.close();
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,96 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_CONLL2000_OP_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_CONLL2000_OP_H_
#include <map>
#include <memory>
#include <mutex>
#include <string>
#include <utility>
#include <vector>
#include "minddata/dataset/engine/datasetops/source/text_file_op.h"
#include "minddata/dataset/util/queue.h"
namespace mindspore {
namespace dataset {
class JaggedConnector;
class CoNLL2000Op : public TextFileOp {
public:
/// \Constructor of CoNLL2000Op.
CoNLL2000Op(int32_t num_workers, int64_t total_rows, int32_t worker_connector_size, std::unique_ptr<DataSchema>,
const std::vector<std::string> &conll2000_file_list, int32_t op_connector_size, bool shuffle_files,
int32_t num_devices, int32_t device_id);
/// \Default destructor.
~CoNLL2000Op() = default;
/// \brief A print method typically used for debugging.
/// \param[in] out The output stream to write output to.
/// \param[in] show_all A bool to control if you want to show all info or just a summary.
void Print(std::ostream &out, bool show_all) const override;
/// \brief Op name getter.
/// \return Name of the current Op.
std::string Name() const override { return "CoNLL2000Op"; }
/// \brief brief description DatasetName name getter
/// \param[in] upper Needs to be capitalized or not
/// \return DatasetName of the current Op
std::string DatasetName(bool upper = false) const { return upper ? "CoNLL2000" : "conll2000"; }
private:
/// \brief Parses a single row and puts the data into multiple TensorRows.
/// \param[in] column The content of the column.
/// \param[in] out_row The tensor table to put the parsed data in.
/// \param[in] index Serial number of column.
/// \return Status The error code returned.
Status LoadTensor(const std::vector<std::string> &column, TensorRow *out_row, size_t index);
/// \brief Removes excess space before and after the string.
/// \param[in] str The input string.
/// \return A string.
std::string Strip(const std::string &str);
/// \brief Split string based on a character delimiter.
/// \param[in] s The input string.
/// \param[in] delim Symbols for separating string.
/// \return A string vector.
std::vector<std::string> Split(const std::string &s, char delim);
/// \brief Specify that the corresponding data is translated into Tensor.
/// \param[in] word A list of words in a sentence.
/// \param[in] pos_tag Pos_tag part of speech.
/// \param[in] chunk_tag Chunk_tag part of speech.
/// \param[in] file The file to read.
/// \param[in] worker_id The id of the worker that is executing this function.
/// \return Status The error code returned.
Status Load(const std::vector<std::string> &word, const std::vector<std::string> &pos_tag,
const std::vector<std::string> &chunk_tag, const std::string &file, int32_t worker_id);
/// \brief Reads a text file and loads the data into multiple TensorRows.
/// \param[in] file The file to read.
/// \param[in] start_offset The start offset of file.
/// \param[in] end_offset The end offset of file.
/// \param[in] worker_id The id of the worker that is executing this function.
/// \return Status The error code returned.
Status LoadFile(const std::string &file, int64_t start_offset, int64_t end_offset, int32_t worker_id) override;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_CONLL2000_OP_H_

View File

@ -84,6 +84,7 @@ constexpr char kCifar10Node[] = "Cifar10Dataset";
constexpr char kCityscapesNode[] = "CityscapesDataset";
constexpr char kCLUENode[] = "CLUEDataset";
constexpr char kCocoNode[] = "CocoDataset";
constexpr char kCoNLL2000Node[] = "CoNLL2000Dataset";
constexpr char kCSVNode[] = "CSVDataset";
constexpr char kDBpediaNode[] = "DBpediaDataset";
constexpr char kDIV2KNode[] = "DIV2KDataset";

View File

@ -11,6 +11,7 @@ set(DATASET_ENGINE_IR_DATASETOPS_SOURCE_SRC_FILES
cityscapes_node.cc
clue_node.cc
coco_node.cc
conll2000_node.cc
csv_node.cc
dbpedia_node.cc
div2k_node.cc

View File

@ -0,0 +1,203 @@
/**
Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/ir/datasetops/source/conll2000_node.h"
#include <algorithm>
#include <utility>
#include "minddata/dataset/engine/datasetops/source/conll2000_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
// Constructor for CoNLL2000Node.
CoNLL2000Node::CoNLL2000Node(const std::string &dataset_dir, const std::string &usage, int64_t num_samples,
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
std::shared_ptr<DatasetCache> cache)
: NonMappableSourceNode(std::move(cache)),
dataset_dir_(dataset_dir),
usage_(usage),
num_samples_(num_samples),
shuffle_(shuffle),
num_shards_(num_shards),
shard_id_(shard_id),
conll2000_file_list_(WalkAllFiles(usage, dataset_dir)) {
// Update the num_shards_ in global context. this number is only used for now by auto_num_worker_pass. User discretion
// is advised. Auto_num_worker_pass is currently an experimental feature which can still work if the num_shards_ isn't
// 100% correct. The reason behind is for now, PreBuildSampler doesn't offer a way to return num_shards. Once
// PreBuildSampler is phased out, this can be cleaned up.
GlobalContext::config_manager()->set_num_shards_for_auto_num_workers(num_shards_);
}
std::shared_ptr<DatasetNode> CoNLL2000Node::Copy() {
auto node =
std::make_shared<CoNLL2000Node>(dataset_dir_, usage_, num_samples_, shuffle_, num_shards_, shard_id_, cache_);
return node;
}
void CoNLL2000Node::Print(std::ostream &out) const {
out << (Name() + "(cache: " + ((cache_ != nullptr) ? "true" : "false") +
", num_shards: " + std::to_string(num_shards_) + ", shard_id: " + std::to_string(shard_id_) + ")");
}
Status CoNLL2000Node::ValidateParams() {
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
RETURN_IF_NOT_OK(ValidateDatasetDirParam("CoNLL2000Node", dataset_dir_));
RETURN_IF_NOT_OK(ValidateStringValue("CoNLL2000Node", usage_, {"train", "test", "all"}));
if (num_samples_ < 0) {
std::string err_msg = "CoNLL2000Node: Invalid number of samples: " + std::to_string(num_samples_);
LOG_AND_RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetShardParams("CoNLL2000Node", num_shards_, shard_id_));
return Status::OK();
}
// Function to build CoNLL2000Node.
Status CoNLL2000Node::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) {
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
// Sort the dataset files in a lexicographical order.
std::vector<std::string> sorted_dataset_files = conll2000_file_list_;
std::sort(sorted_dataset_files.begin(), sorted_dataset_files.end());
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_IF_NOT_OK(schema->AddColumn(ColDescriptor("word", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_IF_NOT_OK(
schema->AddColumn(ColDescriptor("pos_tag", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
RETURN_IF_NOT_OK(
schema->AddColumn(ColDescriptor("chunk_tag", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
// Create and initialize CoNLL2000Op.
std::shared_ptr<CoNLL2000Op> conll2000_op =
std::make_shared<CoNLL2000Op>(num_workers_, num_samples_, worker_connector_size_, std::move(schema),
sorted_dataset_files, connector_que_size_, shuffle_files, num_shards_, shard_id_);
RETURN_IF_NOT_OK(conll2000_op->Init());
// If a global shuffle is used for CoNLL2000, it will inject a shuffle op over the CoNLL2000.
// But, if there is a cache in the tree, we do not need the global shuffle and the shuffle op should not be built.
// This is achieved in the cache transform pass where we call MakeSimpleProducer to reset CoNLL2000's shuffle
// option to false.
if (shuffle_ == ShuffleMode::kGlobal) {
// Inject ShuffleOp.
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
int64_t num_rows = 0;
// First, get the number of rows in the dataset.
RETURN_IF_NOT_OK(CoNLL2000Op::CountAllFileRows(sorted_dataset_files, &num_rows));
// Add the shuffle op after this op.
RETURN_IF_NOT_OK(
AddShuffleOp(sorted_dataset_files.size(), num_shards_, num_rows, 0, connector_que_size_, &shuffle_op));
shuffle_op->SetTotalRepeats(GetTotalRepeats());
shuffle_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
node_ops->push_back(shuffle_op);
}
conll2000_op->SetTotalRepeats(GetTotalRepeats());
conll2000_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
// Add CoNLL2000Op.
node_ops->push_back(conll2000_op);
return Status::OK();
}
// Get the shard id of node.
Status CoNLL2000Node::GetShardId(int32_t *shard_id) {
*shard_id = shard_id_;
return Status::OK();
}
// Get Dataset size.
Status CoNLL2000Node::GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
int64_t *dataset_size) {
if (dataset_size_ > 0) {
*dataset_size = dataset_size_;
return Status::OK();
}
int64_t num_rows, sample_size = num_samples_;
RETURN_IF_NOT_OK(CoNLL2000Op::CountAllFileRows(conll2000_file_list_, &num_rows));
num_rows = static_cast<int64_t>(ceil(num_rows / (1.0 * num_shards_)));
*dataset_size = sample_size > 0 ? std::min(num_rows, sample_size) : num_rows;
dataset_size_ = *dataset_size;
return Status::OK();
}
Status CoNLL2000Node::to_json(nlohmann::json *out_json) {
nlohmann::json args;
args["num_parallel_workers"] = num_workers_;
args["dataset_dir"] = dataset_dir_;
args["usage"] = usage_;
args["num_samples"] = num_samples_;
args["shuffle"] = shuffle_;
args["num_shards"] = num_shards_;
args["shard_id"] = shard_id_;
if (cache_ != nullptr) {
nlohmann::json cache_args;
RETURN_IF_NOT_OK(cache_->to_json(&cache_args));
args["cache"] = cache_args;
}
*out_json = args;
return Status::OK();
}
// Note: The following two functions are common among NonMappableSourceNode and should be promoted to its parent class.
// CoNLL2000 by itself is a non-mappable dataset that does not support sampling.
// However, if a cache operator is injected at some other place higher in the tree, that cache can
// inherit this sampler from the leaf, providing sampling support from the caching layer.
// That is why we setup the sampler for a leaf node that does not use sampling.
Status CoNLL2000Node::SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) {
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
*sampler = SelectSampler(num_samples_, shuffle_files, num_shards_, shard_id_);
return Status::OK();
}
// If a cache has been added into the ascendant tree over this CoNLL2000 node, then the cache will be executing
// a sampler for fetching the data. As such, any options in the CoNLL2000 node need to be reset to its defaults so
// that this CoNLL2000 node will produce the full set of data into the cache.
Status CoNLL2000Node::MakeSimpleProducer() {
shard_id_ = 0;
num_shards_ = 1;
shuffle_ = ShuffleMode::kFalse;
num_samples_ = 0;
return Status::OK();
}
std::vector<std::string> CoNLL2000Node::WalkAllFiles(const std::string &usage, const std::string &dataset_dir) {
std::vector<std::string> conll2000_file_list;
Path train_prefix("train.txt");
Path test_prefix("test.txt");
Path dir(dataset_dir);
if (usage == "train") {
Path temp_path = dir / train_prefix;
conll2000_file_list.push_back(temp_path.ToString());
} else if (usage == "test") {
Path temp_path = dir / test_prefix;
conll2000_file_list.push_back(temp_path.ToString());
} else {
Path temp_path = dir / train_prefix;
conll2000_file_list.push_back(temp_path.ToString());
Path temp_path1 = dir / test_prefix;
conll2000_file_list.push_back(temp_path1.ToString());
}
return conll2000_file_list;
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,130 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_CONLL2000_NODE_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_CONLL2000_NODE_H_
#include <memory>
#include <string>
#include <vector>
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
namespace mindspore {
namespace dataset {
/// \class CoNLL2000Node.
/// \brief A Dataset derived class to represent CoNLL2000 dataset.
class CoNLL2000Node : public NonMappableSourceNode {
public:
/// \brief Constructor.
CoNLL2000Node(const std::string &dataset_dir, const std::string &usage, int64_t num_samples, ShuffleMode shuffle,
int32_t num_shards, int32_t shard_id, std::shared_ptr<DatasetCache> cache);
/// \brief Destructor.
~CoNLL2000Node() = default;
/// \brief Node name getter.
/// \return Name of the current node.
std::string Name() const override { return "CoNLL2000Node"; }
/// \brief Print the description.
/// \param[out] out The output stream to write output to.
void Print(std::ostream &out) const override;
/// \brief Copy the node to a new object.
/// \return A shared pointer to the new copy.
std::shared_ptr<DatasetNode> Copy() override;
/// \brief A base class override function to create the required runtime dataset op objects for this class.
/// \param[in] node_ops A vector containing shared pointer to the Dataset Ops that this object will create.
/// \return Status Status::OK() if build successfully.
Status Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) override;
/// \brief Parameters validation.
/// \return Status Status::OK() if all the parameters are valid.
Status ValidateParams() override;
/// \brief Get the shard id of node.
/// \param[in] shard_id The shard id.
/// \return Status Status::OK() if get shard id successfully.
Status GetShardId(int32_t *shard_id) override;
/// \brief Base-class override for GetDatasetSize.
/// \param[in] size_getter Shared pointer to DatasetSizeGetter.
/// \param[in] estimate This is only supported by some of the ops and it's used to speed up the process of getting
/// dataset size at the expense of accuracy.
/// \param[out] dataset_size the size of the dataset.
/// \return Status of the function.
Status GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
int64_t *dataset_size) override;
/// \brief Getter functions.
const std::string &DatasetDir() const { return dataset_dir_; }
/// \brief Getter functions.
const std::string &Usage() const { return usage_; }
/// \brief Getter functions.
int64_t NumSamples() const { return num_samples_; }
/// \brief Getter functions.
int32_t NumShards() const { return num_shards_; }
/// \brief Getter functions.
int32_t ShardId() const { return shard_id_; }
/// \brief Getter functions.
ShuffleMode Shuffle() const { return shuffle_; }
/// \brief Get the arguments of node.
/// \param[out] out_json JSON string of all attributes.
/// \return Status of the function.
Status to_json(nlohmann::json *out_json) override;
/// \brief CoNLL2000 by itself is a non-mappable dataset that does not support sampling.
/// However, if a cache operator is injected at some other place higher in the tree, that cache can
/// inherit this sampler from the leaf, providing sampling support from the caching layer.
/// That is why we setup the sampler for a leaf node that does not use sampling.
/// Note: This function is common among NonMappableSourceNode and should be promoted to its parent class.
/// \param[in] sampler The sampler to setup.
/// \return Status of the function.
Status SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) override;
/// \brief If a cache has been added into the ascendant tree over this CoNLL2000 node, then the cache will be
/// executing a sampler for fetching the data. As such, any options in the CoNLL2000 node need to be
/// reset to its defaults so that this CoNLL2000 node will produce the full set of data into the cache.
/// Note: This function is common among NonMappableSourceNode and should be promoted to its parent class.
/// \return Status of the function.
Status MakeSimpleProducer() override;
/// \Read all files in the directory.
/// \param[in] usage Part of dataset of CoNLL2000.
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
/// \return Status The status code returned.
std::vector<std::string> WalkAllFiles(const std::string &usage, const std::string &dataset_dir);
private:
std::string dataset_dir_;
std::string usage_;
int64_t num_samples_;
int32_t num_shards_;
int32_t shard_id_;
ShuffleMode shuffle_;
std::vector<std::string> conll2000_file_list_;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_CONLL2000_NODE_H_

View File

@ -1776,6 +1776,70 @@ inline std::shared_ptr<CocoDataset> MS_API Coco(const std::string &dataset_dir,
decode, sampler, cache, extra_metadata);
}
/// \class CoNLL2000Dataset
/// \brief A source dataset for reading and parsing CoNLL2000Dataset.
class MS_API CoNLL2000Dataset : public Dataset {
public:
/// \brief Constructor of CoNLL2000Dataset.
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
/// \param[in] usage The type of data list txt file to be read, can be "train", "test" or "all".
/// \param[in] num_samples The number of samples to be included in the dataset.
/// \param[in] shuffle The mode for shuffling data every epoch.
/// Can be any of:
/// ShuffleMode.kFalse - No shuffling is performed.
/// ShuffleMode.kFiles - Shuffle files only.
/// ShuffleMode.kGlobal - Shuffle both the files and samples.
/// \param[in] num_shards Number of shards that the dataset should be divided into.
/// \param[in] shard_id The shard ID within num_shards. This argument should be
/// specified only when num_shards is also specified.
/// \param[in] cache Tensor cache to use.
CoNLL2000Dataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage, int64_t num_samples,
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
const std::shared_ptr<DatasetCache> &cache);
/// \brief Destructor of CoNLL2000Dataset.
~CoNLL2000Dataset() = default;
};
/// \brief Function to create a CoNLL2000Dataset.
/// \note The generated dataset has three column ['word', 'pos_tag', 'chunk_tag'].
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
/// \param[in] usage Part of dataset of CoNLL2000, can be "train", "test" or "all" (default="all").
/// \param[in] num_samples The number of samples to be included in the dataset
/// (Default = 0, means all samples).
/// \param[in] shuffle The mode for shuffling data every epoch (Default=ShuffleMode.kGlobal).
/// Can be any of:
/// ShuffleMode::kFalse - No shuffling is performed.
/// ShuffleMode::kFiles - Shuffle files only.
/// ShuffleMode::kGlobal - Shuffle both the files and samples.
/// \param[in] num_shards Number of shards that the dataset should be divided into (Default = 1).
/// \param[in] shard_id The shard ID within num_shards. This argument should be
/// specified only when num_shards is also specified (Default = 0).
/// \param[in] cache Tensor cache to use (default=nullptr, which means no cache is used).
/// \return Shared pointer to the CoNLL2000Dataset.
/// \par Example
/// \code
/// /* Define dataset path and MindData object */
/// std::string folder_path = "/path/to/conll2000_dataset_directory";
/// std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "all", 0, ShuffleMode::kGlobal);
///
/// /* Create iterator to read dataset */
/// std::shared_ptr<Iterator> iter = ds->CreateIterator();
/// std::unordered_map<std::string, mindspore::MSTensor> row;
/// iter->GetNextRow(&row);
///
/// /* Note: In CoNLL2000 dataset, each dictionary has keys "word", "pos_tag", "chunk_tag" */
/// auto word = row["word"];
/// \endcode
inline std::shared_ptr<CoNLL2000Dataset> MS_API CoNLL2000(const std::string &dataset_dir,
const std::string &usage = "all", int64_t num_samples = 0,
ShuffleMode shuffle = ShuffleMode::kGlobal,
int32_t num_shards = 1, int32_t shard_id = 0,
const std::shared_ptr<DatasetCache> &cache = nullptr) {
return std::make_shared<CoNLL2000Dataset>(StringToChar(dataset_dir), StringToChar(usage), num_samples, shuffle,
num_shards, shard_id, cache);
}
/// \class CSVDataset
/// \brief A source dataset that reads and parses comma-separated values (CSV) datasets.
class MS_API CSVDataset : public Dataset {

View File

@ -74,7 +74,8 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che
check_photo_tour_dataset, check_ag_news_dataset, check_dbpedia_dataset, check_lj_speech_dataset, \
check_yes_no_dataset, check_speech_commands_dataset, check_tedlium_dataset, check_svhn_dataset, \
check_stl10_dataset, check_yelp_review_dataset, check_penn_treebank_dataset, check_iwslt2016_dataset, \
check_iwslt2017_dataset, check_sogou_news_dataset, check_yahoo_answers_dataset, check_udpos_dataset
check_iwslt2017_dataset, check_sogou_news_dataset, check_yahoo_answers_dataset, check_udpos_dataset,\
check_conll2000_dataset
from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \
get_prefetch_size
from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist
@ -6662,6 +6663,64 @@ class CocoDataset(MappableDataset):
return self._class_indexing
class CoNLL2000Dataset(SourceDataset):
"""
A source dataset that reads and parses CoNLL2000 dataset.
The generated dataset has three columns: :py:obj:`[word, pos_tag, chunk_tag]`.
The tensor of column :py:obj:`word` is of the string type.
The tensor of column :py:obj:`pos_tag` is of the string type.
The tensor of column :py:obj:`chunk_tag` is of the string type.
Args:
dataset_dir (str): Path to the root directory that contains the dataset.
usage (str, optional): Usage of this dataset, can be `train`, `test`, or `all`. `train` will read from
8936 train samples, `test` will read from 2,012 test samples,
`all` will read from all 1,0948 samples (default=None, all samples).
num_samples (int, optional): Number of samples (rows) to read (default=None, reads the full dataset).
shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch
(default=Shuffle.GLOBAL).
If shuffle is False, no shuffling will be performed;
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL
Otherwise, there are two levels of shuffling:
- Shuffle.GLOBAL: Shuffle both the files and samples.
- Shuffle.FILES: Shuffle files only.
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
When this argument is specified, `num_samples` reflects the max sample number of per shard.
shard_id (int, optional): The shard ID within num_shards (default=None). This
argument can only be specified when num_shards is also specified.
num_parallel_workers (int, optional): Number of workers to read the data
(default=None, number set in the config).
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing
(default=None, which means no cache is used).
Raises:
RuntimeError: If dataset_dir does not contain data files.
RuntimeError: If num_parallel_workers exceeds the max thread numbers.
RuntimeError: If num_shards is specified but shard_id is None.
RuntimeError: If shard_id is specified but num_shards is None.
Examples:
>>> conll2000_dataset_dir = "/path/to/conll2000_dataset_dir"
>>> dataset = ds.CoNLL2000Dataset(dataset_files=conll2000_dataset_dir, usage='all')
"""
@check_conll2000_dataset
def __init__(self, dataset_dir, usage=None, num_samples=None, shuffle=Shuffle.GLOBAL, num_shards=None,
shard_id=None, num_parallel_workers=None, cache=None):
super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle,
num_shards=num_shards, shard_id=shard_id, cache=cache)
self.dataset_dir = dataset_dir
self.usage = replace_none(usage, 'all')
def parse(self, children=None):
return cde.CoNLL2000Node(self.dataset_dir, self.usage, self.num_samples, self.shuffle_flag, self.num_shards,
self.shard_id)
class CelebADataset(MappableDataset):
"""
A source dataset for reading and parsing CelebA dataset.

View File

@ -2223,3 +2223,33 @@ def check_yahoo_answers_dataset(method):
return method(self, *args, **kwargs)
return new_method
def check_conll2000_dataset(method):
""" A wrapper that wraps a parameter checker around the original Dataset(CoNLL2000Dataset)."""
@wraps(method)
def new_method(self, *args, **kwargs):
_, param_dict = parse_user_args(method, *args, **kwargs)
nreq_param_int = ['num_samples', 'num_parallel_workers', 'num_shards', 'shard_id']
# check dataset_dir
dataset_dir = param_dict.get('dataset_dir')
check_dir(dataset_dir)
# check usage
usage = param_dict.get('usage')
if usage is not None:
check_valid_str(usage, ["train", "test", "all"], "usage")
validate_dataset_param_value(nreq_param_int, param_dict, int)
check_sampler_shuffle_shard_options(param_dict)
cache = param_dict.get('cache')
check_cache_option(cache)
return method(self, *args, **kwargs)
return new_method

View File

@ -20,6 +20,7 @@ SET(DE_UT_SRCS
c_api_dataset_cityscapes_test.cc
c_api_dataset_clue_test.cc
c_api_dataset_coco_test.cc
c_api_dataset_conll2000_test.cc
c_api_dataset_config_test.cc
c_api_dataset_csv_test.cc
c_api_dataset_dbpedia_test.cc

View File

@ -0,0 +1,628 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/core/global_context.h"
#include "minddata/dataset/include/dataset/datasets.h"
using namespace mindspore::dataset;
using mindspore::dataset::ShuffleMode;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetBasic) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetBasic.";
// Test CoNLL2000 Dataset with single text file and many default inputs.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(987);
GlobalContext::config_manager()->set_num_parallel_workers(2);
// Create a CoNLL2000Dataset, with single text file.
// Note: valid.txt has 3 rows.
// Use 2 samples.
// Use defaults for other input parameters.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "train", 0, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row.
std::unordered_map<std::string, mindspore::MSTensor> row;
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("word"), row.end());
std::vector<std::vector<std::string>> expected_result = {
{"Challenge", "NNP", "O"}, {"Her", "PP$", "B-NP"}, {"To", "TO", "I-VP"}};
uint64_t i = 0;
while (row.size() != 0) {
for (int j = 0; j < column_names.size(); j++) {
auto word = row[column_names[j]];
std::shared_ptr<Tensor> de_word;
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_word));
std::string_view sv;
ASSERT_OK(de_word->GetItemAt(&sv, {{}}));
std::string ss(sv);
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
}
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
EXPECT_EQ(i, 3);
// Expect 3 samples.
// Manually terminate the pipeline.
iter->Stop();
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetBasicWithPipeline) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetBasicWithPipeline.";
// Test CoNLL2000 Dataset with single text file and many default inputs.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(987);
GlobalContext::config_manager()->set_num_parallel_workers(2);
// Create two CoNLL2000Dataset, with single text file.
// Note: test.txt has 3 rows.
// Use 2 samples.
// Use defaults for other input parameters.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds1 = CoNLL2000(dataset_dir, "test", 0, ShuffleMode::kFalse);
std::shared_ptr<Dataset> ds2 = CoNLL2000(dataset_dir, "test", 0, ShuffleMode::kFalse);
EXPECT_NE(ds1, nullptr);
EXPECT_NE(ds2, nullptr);
// Create two Repeat operation on ds.
int32_t repeat_num = 2;
ds1 = ds1->Repeat(repeat_num);
EXPECT_NE(ds1, nullptr);
repeat_num = 3;
ds2 = ds2->Repeat(repeat_num);
EXPECT_NE(ds2, nullptr);
// Create a Concat operation on the ds.
ds1 = ds1->Concat({ds2});
EXPECT_NE(ds1, nullptr);
// Create an iterator over the result of the above dataset.
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds1->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row.
std::unordered_map<std::string, mindspore::MSTensor> row;
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("word"), row.end());
std::vector<std::vector<std::string>> expected_result = {{"He", "PBP", "B-NP"}, {"The", "DT", "B-NP"}};
uint64_t i = 0;
while (row.size() != 0) {
auto word = row["word"];
MS_LOG(INFO) << "Tensor word shape: " << word.Shape();
i++;
ASSERT_OK(iter->GetNextRow(&row));
}
// Expect 10 samples.
EXPECT_EQ(i, 10);
// Manually terminate the pipeline.
iter->Stop();
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000Getters) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000Getters.";
// Test CoNLL2000 Dataset with single text file and many default inputs.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(987);
GlobalContext::config_manager()->set_num_parallel_workers(2);
// Create a CoNLL2000 Dataset, with single text file.
// Note: test.txt has 1 rows.
// Use 2 samples.
// Use defaults for other input parameters.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "test", 2, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
EXPECT_EQ(ds->GetDatasetSize(), 2);
EXPECT_EQ(ds->GetColumnNames(), column_names);
std::shared_ptr<Dataset> ds1 = CoNLL2000(dataset_dir, "", 0, ShuffleMode::kFalse);
EXPECT_NE(ds1, nullptr);
EXPECT_EQ(ds1->GetDatasetSize(), 30);
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetFail1.";
// Create a CoNLL2000Dataset.
// with invalid samplers=-1.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "test", -1, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: CoNLL2000 number of samples cannot be negative.
EXPECT_EQ(iter, nullptr);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetFail2.";
// Attempt to create a CoNLL2000 Dataset.
// with wrongful empty dataset_files input.
std::shared_ptr<Dataset> ds = CoNLL2000("NotExistFile", "test", 2, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: dataset_files is not specified.
EXPECT_EQ(iter, nullptr);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetFail3) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetFail3.";
// Create a CoNLL2000 Dataset.
// with non-existent dataset_files input.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "dev", 2, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: specified dataset_files does not exist.
EXPECT_EQ(iter, nullptr);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetFail4) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetFail4.";
// Create a CoNLL2000Dataset.
// with empty string dataset_files input.
std::shared_ptr<Dataset> ds = CoNLL2000("", "test", 2, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
std::cout << iter;
// Expect failure: specified dataset_files does not exist.
EXPECT_EQ(iter, nullptr);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetFail5) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetFail5.";
// Create a CoNLL2000 Dataset.
// with invalid num_shards=0 value.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "test", 2, ShuffleMode::kFalse, 0);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Number of shards cannot be <=0.
EXPECT_EQ(iter, nullptr);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetFail6) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetFail6.";
// Create a CoNLL2000Dataset.
// with invalid shard_id=-1 value.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "test", 2, ShuffleMode::kFalse, -1);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: shard_id cannot be negative.
EXPECT_EQ(iter, nullptr);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetFail7) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetFail7.";
// Create a CoNLL2000 Dataset.
// with invalid shard_id=2 and num_shards=2 combination.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "test", 2, ShuffleMode::kFalse, 2, 2);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: Cannot have shard_id >= num_shards.
EXPECT_EQ(iter, nullptr);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetShuffleFalse) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetShuffleFalse.";
// Test CoNLL2000 Dataset with two text files and no shuffle, num_parallel_workers=4.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(654);
GlobalContext::config_manager()->set_num_parallel_workers(4);
// Create a CoNLL2000 Dataset, with two text files, test.txt and train.txt, in lexicographical order.
// Note: test.txt has 2 rows.
// Note: train.txt has 3 rows.
// Use default of all samples.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "all", 0, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row.
std::unordered_map<std::string, mindspore::MSTensor> row;
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("word"), row.end());
std::vector<std::vector<std::string>> expected_result = {{"He", "PBP", "B-NP"},
{"Challenge", "NNP", "O"},
{"The", "DT", "B-NP"},
{"Her", "PP$", "B-NP"},
{"To", "TO", "I-VP"}};
uint64_t i = 0;
while (row.size() != 0) {
for (int j = 0; j < column_names.size(); j++) {
auto word = row[column_names[j]];
std::shared_ptr<Tensor> de_word;
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_word));
std::string_view sv;
ASSERT_OK(de_word->GetItemAt(&sv, {{}}));
std::string ss(sv);
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
}
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
EXPECT_EQ(i, 5);
// Manually terminate the pipeline.
iter->Stop();
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetShuffleFilesA) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetShuffleFilesA.";
// Test CoNLL2000 Dataset with files shuffle, num_parallel_workers=4.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(135);
GlobalContext::config_manager()->set_num_parallel_workers(4);
// Create a CoNLL2000 Dataset, with two text files,test.txt and train.txt, in lexicographical order.
// Note: test.txt has 2 rows.
// Note: train.txt has 3 rows.
// Set shuffle to files shuffle.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "all", 0, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row.
std::unordered_map<std::string, mindspore::MSTensor> row;
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("word"), row.end());
std::vector<std::vector<std::string>> expected_result = {{"He", "PBP", "B-NP"},
{"Challenge", "NNP", "O"},
{"The", "DT", "B-NP"},
{"Her", "PP$", "B-NP"},
{"To", "TO", "I-VP"}};
uint64_t i = 0;
while (row.size() != 0) {
for (int j = 0; j < column_names.size(); j++) {
auto word = row[column_names[j]];
std::shared_ptr<Tensor> de_word;
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_word));
std::string_view sv;
ASSERT_OK(de_word->GetItemAt(&sv, {{}}));
std::string ss(sv);
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
}
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
// Expect 3 + 1 + 2 = 6 samples.
EXPECT_EQ(i, 5);
// Manually terminate the pipeline.
iter->Stop();
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetShuffleFilesB) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetShuffleFilesB.";
// Test CoNLL2000 Dataset with files shuffle, num_parallel_workers=4.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(135);
GlobalContext::config_manager()->set_num_parallel_workers(4);
// Create a CoNLL2000 Dataset, with two text files test.txt and train.txt, in lexicographical order.
// Note: test.txt has 2 rows.
// Note: train.txt has 3 rows.
// Set shuffle to files shuffle.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "all", 0, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row.
std::unordered_map<std::string, mindspore::MSTensor> row;
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("word"), row.end());
std::vector<std::vector<std::string>> expected_result = {{"He", "PBP", "B-NP"},
{"Challenge", "NNP", "O"},
{"The", "DT", "B-NP"},
{"Her", "PP$", "B-NP"},
{"To", "TO", "I-VP"}};
uint64_t i = 0;
while (row.size() != 0) {
for (int j = 0; j < column_names.size(); j++) {
auto word = row[column_names[j]];
std::shared_ptr<Tensor> de_word;
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_word));
std::string_view sv;
ASSERT_OK(de_word->GetItemAt(&sv, {{}}));
std::string ss(sv);
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
}
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
// Expect 3 + 1 + 2 = 6 samples.
EXPECT_EQ(i, 5);
// Manually terminate the pipeline.
iter->Stop();
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetShuffleGlobal1A) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetShuffleGlobalA.";
// Test CoNLL2000 Dataset with 1 text file, global shuffle, num_parallel_workers=4.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(246);
GlobalContext::config_manager()->set_num_parallel_workers(4);
// Create a CoNLL2000 Dataset, with one text files.
// Note: test.txt has 2 rows.
// Set shuffle to global shuffle.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "test", 0, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row.
std::unordered_map<std::string, mindspore::MSTensor> row;
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("word"), row.end());
std::vector<std::vector<std::string>> expected_result = {{"He", "PBP", "B-NP"}, {"The", "DT", "B-NP"}};
uint64_t i = 0;
while (row.size() != 0) {
for (int j = 0; j < column_names.size(); j++) {
auto word = row[column_names[j]];
std::shared_ptr<Tensor> de_word;
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_word));
std::string_view sv;
ASSERT_OK(de_word->GetItemAt(&sv, {{}}));
std::string ss(sv);
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
}
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
// Expect 1 samples.
EXPECT_EQ(i, 2);
// Manually terminate the pipeline.
iter->Stop();
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}
/// Feature: CoNLL2000ChunkingDataset.
/// Description: test CoNLL2000ChunkingDataset in pipeline mode.
/// Expectation: the data is processed successfully.
TEST_F(MindDataTestPipeline, TestCoNLL2000DatasetShuffleGlobalB) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCoNLL2000DatasetShuffleGlobalB.";
// Test CoNLL200 Dataset with 2 text files, global shuffle, num_parallel_workers=4.
// Set configuration.
uint32_t original_seed = GlobalContext::config_manager()->seed();
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
GlobalContext::config_manager()->set_seed(246);
GlobalContext::config_manager()->set_num_parallel_workers(4);
// Create a CoNLL2000 Dataset, with two text files.
// Note: test.txt has 2 rows.
// Note: train.txt has 3 rows.
// Set shuffle to global shuffle.
std::string dataset_dir = datasets_root_path_ + "/testCoNLL2000Dataset";
std::shared_ptr<Dataset> ds = CoNLL2000(dataset_dir, "all", 0, ShuffleMode::kFalse);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset.
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row.
std::unordered_map<std::string, mindspore::MSTensor> row;
std::vector<std::string> column_names = {"word", "pos_tag", "chunk_tag"};
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("word"), row.end());
std::vector<std::vector<std::string>> expected_result = {{"He", "PBP", "B-NP"},
{"Challenge", "NNP", "O"},
{"The", "DT", "B-NP"},
{"Her", "PP$", "B-NP"},
{"To", "TO", "I-VP"}};
uint64_t i = 0;
while (row.size() != 0) {
for (int j = 0; j < column_names.size(); j++) {
auto word = row[column_names[j]];
std::shared_ptr<Tensor> de_word;
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_word));
std::string_view sv;
ASSERT_OK(de_word->GetItemAt(&sv, {{}}));
std::string ss(sv);
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
}
ASSERT_OK(iter->GetNextRow(&row));
i++;
}
// Expect 3 + 1 + 2 = 6 samples.
EXPECT_EQ(i, 5);
// Manually terminate the pipeline.
iter->Stop();
// Restore configuration.
GlobalContext::config_manager()->set_seed(original_seed);
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
}

View File

@ -0,0 +1,14 @@
He PBP B-NP
reckons VBZ B-VP
the DT B-NP
current JJ I-NP
account NN I-NP
. . O
The DT B-NP
1.8 CD I-NP
billion CD I-NP
in IN B-PP
September NNP B-NP
. . O

View File

@ -0,0 +1,21 @@
Challenge NNP O
of IN B-PP
the DT B-NP
August NNP B-NP
month NNP B-NP
. . O
Her PP$ B-NP
's POS B-NP
chancellor NNP O
at IN B-PP
Lawson NNP I-NP
. . O
To TO I-VP
economists NNS B-NP
, , O
foreign JJ B-NP
exchange NN I-NP
. . O

View File

@ -0,0 +1,345 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import pytest
import mindspore.dataset as ds
from mindspore import log as logger
from util import config_get_set_num_parallel_workers, config_get_set_seed
DATA_DIR = '../data/dataset/testCoNLL2000Dataset'
def test_conll2000_dataset_one_file():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False)
count = 0
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info("{}".format(i["word"]))
count += 1
assert count == 2
def test_conll2000_dataset_all_file():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
data = ds.CoNLL2000Dataset(DATA_DIR, usage="all", shuffle=False)
count = 0
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info("{}".format(i["word"]))
count += 1
assert count == 5
def test_conll2000_dataset_num_samples_none():
"""
Feature: CoNLL2000ChunkingDataset
Description: test param check of CoNLL2000ChunkingDataset
Expectation: throw correct error and message
"""
# Do not provide a num_samples argument, so it would be None by default
data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False)
count = 0
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info("{}".format(i["word"]))
count += 1
assert count == 2
def test_conll2000_dataset_shuffle_false_num_parallel_workers_4():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
original_seed = config_get_set_seed(987)
data = ds.CoNLL2000Dataset(DATA_DIR, usage="all", shuffle=False)
count = 0
numword = 5
line = ["He", "reckons", "the", "current", "account", ".",
"Challenge", "of", "the", "August", "month", ".",
"The", "1.8", "billion", "in", "September", ".",
"Her", "'s", "chancellor", "at", "Lawson", ".",
"To", "economists", ",", "foreign", "exchange", "."]
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
for j in range(numword):
strs = i["word"][j].item().decode("utf8")
assert strs == line[count*6+j]
count += 1
assert count == 5
# Restore configuration
ds.config.set_num_parallel_workers(original_num_parallel_workers)
ds.config.set_seed(original_seed)
def test_conll2000_dataset_shuffle_false_num_parallel_workers_1():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
original_seed = config_get_set_seed(987)
data = ds.CoNLL2000Dataset(DATA_DIR, usage="all", shuffle=False)
count = 0
numword = 6
line = ["He", "reckons", "the", "current", "account", ".",
"The", "1.8", "billion", "in", "September", ".",
"Challenge", "of", "the", "August", "month", ".",
"Her", "'s", "chancellor", "at", "Lawson", ".",
"To", "economists", ",", "foreign", "exchange", "."]
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
for j in range(numword):
strs = i["word"][j].item().decode("utf8")
assert strs == line[count*6+j]
count += 1
assert count == 5
# Restore configuration
ds.config.set_num_parallel_workers(original_num_parallel_workers)
ds.config.set_seed(original_seed)
def test_conll2000_dataset_shuffle_files_num_parallel_workers_4():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
original_seed = config_get_set_seed(135)
data = ds.CoNLL2000Dataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.FILES)
count = 0
numword = 6
line = ["He", "reckons", "the", "current", "account", ".",
"Challenge", "of", "the", "August", "month", ".",
"The", "1.8", "billion", "in", "September", ".",
"Her", "'s", "chancellor", "at", "Lawson", ".",
"To", "economists", ",", "foreign", "exchange", "."]
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
for j in range(numword):
strs = i["word"][j].item().decode("utf8")
assert strs == line[count*6+j]
count += 1
assert count == 5
# Restore configuration
ds.config.set_num_parallel_workers(original_num_parallel_workers)
ds.config.set_seed(original_seed)
def test_conll2000_dataset_shuffle_files_num_parallel_workers_1():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
original_seed = config_get_set_seed(135)
data = ds.CoNLL2000Dataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.FILES)
count = 0
numword = 6
line = ["He", "reckons", "the", "current", "account", ".",
"The", "1.8", "billion", "in", "September", ".",
"Challenge", "of", "the", "August", "month", ".",
"Her", "'s", "chancellor", "at", "Lawson", ".",
"To", "economists", ",", "foreign", "exchange", "."]
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
for j in range(numword):
strs = i["word"][j].item().decode("utf8")
assert strs == line[count*6+j]
count += 1
assert count == 5
# Restore configuration
ds.config.set_num_parallel_workers(original_num_parallel_workers)
ds.config.set_seed(original_seed)
def test_conll2000_dataset_shuffle_global_num_parallel_workers_4():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
original_seed = config_get_set_seed(246)
data = ds.CoNLL2000Dataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.GLOBAL)
count = 0
numword = 6
line = ["Challenge", "of", "the", "August", "month", ".",
"To", "economists", ",", "foreign", "exchange", ".",
"Her", "'s", "chancellor", "at", "Lawson", ".",
"He", "reckons", "the", "current", "account", ".",
"The", "1.8", "billion", "in", "September", "."]
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
for j in range(numword):
strs = i["word"][j].item().decode("utf8")
assert strs == line[count*6+j]
count += 1
assert count == 5
# Restore configuration
ds.config.set_num_parallel_workers(original_num_parallel_workers)
ds.config.set_seed(original_seed)
def test_conll2000_dataset_shuffle_global_num_parallel_workers_1():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
original_seed = config_get_set_seed(246)
data = ds.CoNLL2000Dataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.GLOBAL)
count = 0
numword = 6
line = ["Challenge", "of", "the", "August", "month", ".",
"The", "1.8", "billion", "in", "September", ".",
"To", "economists", ",", "foreign", "exchange", ".",
"Her", "'s", "chancellor", "at", "Lawson", ".",
"He", "reckons", "the", "current", "account", "."]
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
for j in range(numword):
strs = i["word"][j].item().decode("utf8")
assert strs == line[count*6+j]
count += 1
assert count == 5
# Restore configuration
ds.config.set_num_parallel_workers(original_num_parallel_workers)
ds.config.set_seed(original_seed)
def test_conll2000_dataset_num_samples():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False, num_samples=2)
count = 0
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
count += 1
assert count == 2
def test_conll2000_dataset_distribution():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False, num_shards=2, shard_id=1)
count = 0
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
count += 1
assert count == 1
def test_conll2000_dataset_repeat():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False)
data = data.repeat(3)
count = 0
numword = 6
line = ["He", "reckons", "the", "current", "account", ".",
"The", "1.8", "billion", "in", "September", ".",
"He", "reckons", "the", "current", "account", ".",
"The", "1.8", "billion", "in", "September", ".",
"He", "reckons", "the", "current", "account", ".",
"The", "1.8", "billion", "in", "September", ".",]
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
for j in range(numword):
strs = i["word"][j].item().decode("utf8")
assert strs == line[count*6+j]
count += 1
assert count == 6
def test_conll2000_dataset_get_datasetsize():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False)
size = data.get_dataset_size()
assert size == 12
def test_conll2000_dataset_to_device():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False)
data = data.to_device()
data.send()
def test_conll2000_dataset_exceptions():
"""
Feature: CoNLL2000ChunkingDataset.
Description: test param check of CoNLL2000ChunkingDataset.
Expectation: throw correct error and message.
"""
with pytest.raises(ValueError) as error_info:
_ = ds.CoNLL2000Dataset(DATA_DIR, usage="test", num_samples=-1)
assert "num_samples exceeds the boundary" in str(error_info.value)
with pytest.raises(ValueError) as error_info:
_ = ds.CoNLL2000Dataset("NotExistFile", usage="test")
assert "The folder NotExistFile does not exist or is not a directory or permission denied!" in str(error_info.value)
with pytest.raises(ValueError) as error_info:
_ = ds.TextFileDataset("")
assert "The following patterns did not match any files" in str(error_info.value)
def exception_func(item):
raise Exception("Error occur!")
with pytest.raises(RuntimeError) as error_info:
data = data = ds.CoNLL2000Dataset(DATA_DIR, usage="test", shuffle=False)
data = data.map(operations=exception_func, input_columns=["word"], num_parallel_workers=1)
for _ in data.__iter__():
pass
assert "map operation: [PyFunc] failed. The corresponding data files" in str(error_info.value)
if __name__ == "__main__":
test_conll2000_dataset_one_file()
test_conll2000_dataset_all_file()
test_conll2000_dataset_num_samples_none()
test_conll2000_dataset_shuffle_false_num_parallel_workers_4()
test_conll2000_dataset_shuffle_false_num_parallel_workers_1()
test_conll2000_dataset_shuffle_files_num_parallel_workers_4()
test_conll2000_dataset_shuffle_files_num_parallel_workers_1()
test_conll2000_dataset_shuffle_global_num_parallel_workers_4()
test_conll2000_dataset_shuffle_global_num_parallel_workers_1()
test_conll2000_dataset_num_samples()
test_conll2000_dataset_distribution()
test_conll2000_dataset_repeat()
test_conll2000_dataset_get_datasetsize()
test_conll2000_dataset_to_device()
test_conll2000_dataset_exceptions()