support getting dynamic_min_max_shape of data
This commit is contained in:
parent
f91a365564
commit
13ef5b61f3
|
@ -32,6 +32,18 @@ INT32_MAX = 2147483647
|
|||
UINT32_MAX = 4294967295
|
||||
|
||||
_config = cde.GlobalContext.config_manager()
|
||||
_dynamic_columns = dict()
|
||||
|
||||
|
||||
def set_dynamic_columns(columns=None):
|
||||
global _dynamic_columns
|
||||
if not isinstance(columns, dict):
|
||||
raise TypeError("Pass a dict to set dynamic shape, example: {\"data1\": [16, None, 256]}")
|
||||
_dynamic_columns = columns
|
||||
|
||||
|
||||
def get_dynamic_columns():
|
||||
return _dynamic_columns
|
||||
|
||||
|
||||
def _init_device_info():
|
||||
|
|
|
@ -60,7 +60,7 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che
|
|||
check_random_dataset, check_split, check_bucket_batch_by_length, check_cluedataset, check_save, check_csvdataset, \
|
||||
check_paddeddataset, check_tuple_iterator, check_dict_iterator, check_schema, check_to_device_send
|
||||
from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \
|
||||
get_prefetch_size
|
||||
get_prefetch_size, get_dynamic_columns
|
||||
from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist
|
||||
from ..core.validator_helpers import replace_none
|
||||
|
||||
|
@ -211,6 +211,9 @@ class Dataset:
|
|||
self._num_classes = None
|
||||
self._repeat_count = None
|
||||
self._class_indexing = None
|
||||
self.min_shapes = None
|
||||
self.max_shapes = None
|
||||
self.dynamic_shapes = None
|
||||
self._sync = False
|
||||
|
||||
def create_ir_tree(self):
|
||||
|
@ -1556,6 +1559,82 @@ class Dataset:
|
|||
self.close_pool()
|
||||
return self.dataset_size
|
||||
|
||||
def get_dynamic_min_max_shape(self):
|
||||
"""
|
||||
Get dynamic information of source data.
|
||||
|
||||
Returns:
|
||||
lists, min_shapes, max_shapes, dynamic_shapes of source data.
|
||||
"""
|
||||
# Assume data1 shape is dynamic, data2 shape is fix
|
||||
# {"data1": [batch_size, None, feat_len], "data2": [batch_size, feat_len]}
|
||||
dynamic_columns = get_dynamic_columns()
|
||||
if not dynamic_columns:
|
||||
raise RuntimeError("dynamic_columns is not set, call set_dynamic_columns() first.")
|
||||
|
||||
if self.min_shapes is not None and self.max_shapes is not None and self.dynamic_shapes is not None:
|
||||
return self.min_shapes, self.max_shapes, self.dynamic_shapes
|
||||
|
||||
logger.warning("Calculating dynamic shape of input data, this will take a few minutes...")
|
||||
|
||||
# ["data1", "data2"]
|
||||
dataset_columns = self.get_col_names()
|
||||
for column in dynamic_columns:
|
||||
if column not in dataset_columns:
|
||||
raise RuntimeError("dynamic column [" + column + "] does not match any column in dataset: " +
|
||||
str(dataset_columns))
|
||||
|
||||
# Shape[1] of data1 is variable
|
||||
# {"data1": {(batch_size, 100, feat_len), (16, 200, 83)}, "data2": {(batch_size, feat_len)}}
|
||||
column_shape_set = {col: set() for col in dataset_columns}
|
||||
dataset_size_counter = 0
|
||||
for data in self.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
dataset_size_counter += 1
|
||||
for col in data.keys():
|
||||
if col in dynamic_columns:
|
||||
shape_mismatch = "dynamic column [" + col + "] with shape " + str(dynamic_columns[col]) + \
|
||||
" does not match dataset column [" + col + "] with shape " + str(list(data[col].shape))
|
||||
if data[col].ndim != len(dynamic_columns[col]):
|
||||
raise RuntimeError(shape_mismatch)
|
||||
for dim in range(len(dynamic_columns[col])):
|
||||
if dynamic_columns[col][dim] is not None and dynamic_columns[col][dim] != data[col].shape[dim]:
|
||||
raise RuntimeError(shape_mismatch)
|
||||
column_shape_set[col].add(tuple(data[col].shape))
|
||||
|
||||
# we get dataset_size after dryrun
|
||||
self.dataset_size = dataset_size_counter
|
||||
|
||||
min_shapes, max_shapes, dynamic_shapes = list(), list(), list()
|
||||
for col, shape_set in column_shape_set.items():
|
||||
if len(shape_set) > 1:
|
||||
if col not in dynamic_columns:
|
||||
raise RuntimeError("column [" + col + "] has dynamic shape but not set by set_dynamic_columns()" +
|
||||
", shapes of [" + col + "]: " + str(list(shape_set)))
|
||||
shape_npy = np.array(list(shape_set))
|
||||
max_shape = shape_npy.max(axis=0)
|
||||
min_shape = shape_npy.min(axis=0)
|
||||
|
||||
# Set min shape to 1 due to unknown shuffle
|
||||
min_shape = np.where(np.equal(dynamic_columns[col], None), 1, min_shape)
|
||||
# Set dynamic dim to -1 for ME
|
||||
dynamic_shape = np.where(np.equal(dynamic_columns[col], None), -1, dynamic_columns[col])
|
||||
|
||||
max_shapes.append(max_shape.tolist())
|
||||
min_shapes.append(min_shape.tolist())
|
||||
dynamic_shapes.append(dynamic_shape.tolist())
|
||||
else:
|
||||
# Also append fix shape to keep order of column shape
|
||||
if col in dynamic_columns:
|
||||
logger.warning("column [" + col + "] has no dynamic shape but set by set_dynamic_columns()")
|
||||
fix_shape = list(list(shape_set)[0])
|
||||
max_shapes.append(fix_shape)
|
||||
min_shapes.append(fix_shape)
|
||||
dynamic_shapes.append(fix_shape)
|
||||
self.min_shapes = min_shapes
|
||||
self.max_shapes = max_shapes
|
||||
self.dynamic_shapes = dynamic_shapes
|
||||
return self.min_shapes, self.max_shapes, self.dynamic_shapes
|
||||
|
||||
def num_classes(self):
|
||||
"""
|
||||
Get the number of classes in a dataset.
|
||||
|
|
|
@ -254,6 +254,8 @@ class DatasetHelper:
|
|||
def get_data_info(self):
|
||||
return self.iter.get_data_info()
|
||||
|
||||
def get_dynamic_min_max_shape(self):
|
||||
return self.iter.get_dynamic_min_max_shape()
|
||||
|
||||
class _DatasetIter:
|
||||
"""Base iter for dataset helper"""
|
||||
|
@ -283,6 +285,7 @@ class _DatasetIter:
|
|||
self.release = dataset.__transfer_dataset__.release
|
||||
self.continue_send = dataset.__transfer_dataset__.continue_send
|
||||
self.get_data_info = dataset.__transfer_dataset__.get_data_info
|
||||
self.get_dynamic_min_max_shape = dataset.__transfer_dataset__.get_dynamic_min_max_shape
|
||||
self.dataset_types, self.dataset_shapes = _get_types_and_shapes(dataset)
|
||||
|
||||
def __iter__(self):
|
||||
|
|
|
@ -73,6 +73,9 @@ class MindData:
|
|||
def get_data_info(self):
|
||||
pass
|
||||
|
||||
def get_dynamic_min_max_shape(self):
|
||||
pass
|
||||
|
||||
def __len__(self):
|
||||
return self._size
|
||||
|
||||
|
|
|
@ -0,0 +1,152 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
|
||||
|
||||
def generator0():
|
||||
for i in range(50, 70):
|
||||
yield (np.ones((32, i)), np.zeros((16, i, i, 3)), np.ones((i)))
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shape_0():
|
||||
logger.info("Test get_dynamic_min_max_shape with dynamic shape columns")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator0, ["data1", "data2", "data3"])
|
||||
|
||||
# config dynamic shape
|
||||
ds.config.set_dynamic_columns(columns={"data1": [32, None], "data2": [16, None, None, 3], "data3": [None]})
|
||||
|
||||
# get dynamic information
|
||||
min_shapes, max_shapes, dynamic_shapes = dataset.get_dynamic_min_max_shape()
|
||||
|
||||
# check result
|
||||
np.testing.assert_array_equal(min_shapes, [[32, 1], [16, 1, 1, 3], [1]])
|
||||
np.testing.assert_array_equal(max_shapes, [[32, 69], [16, 69, 69, 3], [69]])
|
||||
np.testing.assert_array_equal(dynamic_shapes, [[32, -1], [16, -1, -1, 3], [-1]])
|
||||
|
||||
|
||||
def generator1():
|
||||
for i in range(1, 100):
|
||||
yield (np.ones((16, i, 83)), np.array((i)))
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shape_1():
|
||||
logger.info("Test get_dynamic_min_max_shape with dynamic shape column and fix shape column")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator1, ["data1", "data2"])
|
||||
|
||||
# config dynamic shape
|
||||
ds.config.set_dynamic_columns(columns={"data1": [16, None, 83], "data2": []})
|
||||
|
||||
# get dynamic information
|
||||
min_shapes, max_shapes, dynamic_shapes = dataset.get_dynamic_min_max_shape()
|
||||
|
||||
# check result
|
||||
# raise a warning to tell user "data2" is not dynamic
|
||||
np.testing.assert_array_equal(min_shapes, [[16, 1, 83], []])
|
||||
np.testing.assert_array_equal(max_shapes, [[16, 99, 83], []])
|
||||
np.testing.assert_array_equal(dynamic_shapes, [[16, -1, 83], []])
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shape_2():
|
||||
logger.info("Test get_dynamic_min_max_shape with all dynamic config")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator1, ["data1", "data2"])
|
||||
|
||||
# config all dims have dynamic shape
|
||||
ds.config.set_dynamic_columns(columns={"data1": [None, None, None]})
|
||||
min_shapes, max_shapes, dynamic_shapes = dataset.get_dynamic_min_max_shape()
|
||||
|
||||
# check result
|
||||
# Although shape[0] of data1 is fix in given data, user think it is dynamic, so shape[0] is dynamic
|
||||
np.testing.assert_array_equal(min_shapes, [[1, 1, 1], []])
|
||||
np.testing.assert_array_equal(max_shapes, [[16, 99, 83], []])
|
||||
np.testing.assert_array_equal(dynamic_shapes, [[-1, -1, -1], []])
|
||||
|
||||
|
||||
def generator2():
|
||||
for i in range(80, 100):
|
||||
yield (np.ones((16, i, 83)), np.ones((5, 5)))
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shape_3():
|
||||
logger.info("Test get_dynamic_min_max_shape with only config dynamic column")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator2, ["data1", "data2"])
|
||||
|
||||
# only dynamic shape is required to config
|
||||
ds.config.set_dynamic_columns(columns={"data1": [16, None, 83]})
|
||||
|
||||
# get dynamic information
|
||||
min_shapes, max_shapes, dynamic_shapes = dataset.get_dynamic_min_max_shape()
|
||||
|
||||
# check result
|
||||
# column with fix shape will be also appended to shapes list
|
||||
np.testing.assert_array_equal(min_shapes, [[16, 1, 83], [5, 5]])
|
||||
np.testing.assert_array_equal(max_shapes, [[16, 99, 83], [5, 5]])
|
||||
np.testing.assert_array_equal(dynamic_shapes, [[16, -1, 83], [5, 5]])
|
||||
|
||||
|
||||
def test_get_dynamic_min_max_shape_4():
|
||||
logger.info("Test get_dynamic_min_max_shape with unexpected column setting")
|
||||
|
||||
dataset = ds.GeneratorDataset(generator1, ["data1", "data2"])
|
||||
|
||||
with pytest.raises(TypeError) as info:
|
||||
# dynamic column is not in dict
|
||||
ds.config.set_dynamic_columns(columns=list())
|
||||
assert "Pass a dict to set dynamic shape" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
# dynamic column is not set
|
||||
ds.config.set_dynamic_columns(columns=dict())
|
||||
dataset.get_dynamic_min_max_shape()
|
||||
assert "dynamic_columns is not set, call set_dynamic_columns() first" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
# dynamic column is not set
|
||||
ds.config.set_dynamic_columns(columns={"data2": []})
|
||||
dataset.get_dynamic_min_max_shape()
|
||||
assert "column [data1] has dynamic shape but not set by set_dynamic_columns()" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
# column does not exist
|
||||
ds.config.set_dynamic_columns(columns={"data3": [16, None, 83]})
|
||||
dataset.get_dynamic_min_max_shape()
|
||||
assert "dynamic column [data3] does not match any column in dataset" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
# unexpected column shape
|
||||
ds.config.set_dynamic_columns(columns={"data1": [16, 83, None]})
|
||||
dataset.get_dynamic_min_max_shape()
|
||||
assert "shape [16, 83, None] does not match dataset column [data1] with shape [16, 1, 83]" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
# unexpected column shape
|
||||
ds.config.set_dynamic_columns(columns={"data1": [16, None]})
|
||||
dataset.get_dynamic_min_max_shape()
|
||||
assert "shape [16, None] does not match dataset column [data1] with shape [16, 1, 83]" in str(info.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_get_dynamic_min_max_shape_0()
|
||||
test_get_dynamic_min_max_shape_1()
|
||||
test_get_dynamic_min_max_shape_2()
|
||||
test_get_dynamic_min_max_shape_3()
|
||||
test_get_dynamic_min_max_shape_4()
|
||||
|
Loading…
Reference in New Issue