optimize cnnctc learning rate strategy

This commit is contained in:
zhouneng2 2021-07-26 14:40:24 +08:00
parent 305f08811d
commit 13b7cb2e68
4 changed files with 55 additions and 11 deletions

View File

@ -33,8 +33,10 @@ TRAIN_EPOCHS: 3
run_distribute: False
PRED_TRAINED: ""
SAVE_PATH: "./"
LR: 1e-4
LR_PARA: 5e-4
#LR
base_lr: 0.0005
warmup_step: 2000
warmup_ratio: 0.0625
MOMENTUM: 0.8
LOSS_SCALE: 8096
SAVE_CKPT_PER_N_STEP: 2000

View File

@ -35,12 +35,14 @@ class NormalizePAD():
def __call__(self, img):
# toTensor
img = np.array(img, dtype=np.float32)
# normalize
means = [121.58949, 123.93914, 123.418655]
stds = [65.70353, 65.142426, 68.61079]
img = np.subtract(img, means)
img = np.true_divide(img, stds)
img = img.transpose([2, 0, 1])
img = img.astype(np.float)
img = np.true_divide(img, 255)
# normalize
img = np.subtract(img, 0.5)
img = np.true_divide(img, 0.5)
_, _, w = img.shape
Pad_img = np.zeros(shape=self.max_size, dtype=np.float32)

View File

@ -0,0 +1,41 @@
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""lr generator for cnnctc"""
import math
def linear_warmup_learning_rate(current_step, warmup_steps, base_lr, init_lr):
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
learning_rate = float(init_lr) + lr_inc * current_step
return learning_rate
def a_cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps):
base = float(current_step - warmup_steps) / float(decay_steps)
learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr
return learning_rate
def dynamic_lr(config, steps_per_epoch):
"""dynamic learning rate generator"""
base_lr = config.base_lr
total_steps = steps_per_epoch * config.TRAIN_EPOCHS
warmup_steps = int(config.warmup_step)
decay_steps = total_steps - warmup_steps
lr = []
for i in range(total_steps):
if i < warmup_steps:
lr.append(linear_warmup_learning_rate(i, warmup_steps, base_lr, base_lr * config.warmup_ratio))
else:
lr.append(a_cosine_learning_rate(i, base_lr, warmup_steps, decay_steps))
return lr

View File

@ -15,7 +15,6 @@
"""cnnctc train"""
import ast
import numpy as np
import mindspore
import mindspore.common.dtype as mstype
@ -30,6 +29,7 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.callback import LossCallBack
from src.cnn_ctc import CNNCTC_Model, ctc_loss, WithLossCell, CNNCTCTrainOneStepWithLossScaleCell
from src.dataset import ST_MJ_Generator_batch_fixed_length, ST_MJ_Generator_batch_fixed_length_para
from src.lr_schedule import dynamic_lr
from src.model_utils.config import config
from src.model_utils.device_adapter import get_device_id
from src.model_utils.moxing_adapter import moxing_wrapper
@ -88,9 +88,6 @@ def train():
else:
ckpt_save_dir = config.SAVE_PATH + "ckpt_standalone/"
config.LR = ast.literal_eval(config.LR)
config.LR_PARA = ast.literal_eval(config.LR_PARA)
ds = dataset_creator(config.run_distribute)
net = CNNCTC_Model(config.NUM_CLASS, config.HIDDEN_SIZE, config.FINAL_FEATURE_WIDTH)
@ -104,9 +101,11 @@ def train():
print('train from scratch...')
criterion = ctc_loss()
dataset_size = ds.get_dataset_size()
lr = Tensor(dynamic_lr(config, dataset_size), mstype.float32)
opt = mindspore.nn.RMSProp(params=net.trainable_params(),
centered=True,
learning_rate=config.LR_PARA,
learning_rate=lr,
momentum=config.MOMENTUM,
loss_scale=config.LOSS_SCALE)