!40364 add ckpt st
Merge pull request !40364 from changzherui/add_ckpt_st
This commit is contained in:
commit
1289a3583e
|
@ -0,0 +1,182 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import stat
|
||||
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms as C
|
||||
import mindspore.dataset.vision as CV
|
||||
import mindspore.nn as nn
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
||||
from mindspore import load_checkpoint
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.dataset.vision import Inter
|
||||
from mindspore.train import Model
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = conv(channel, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
|
||||
"""create dataset for train or test"""
|
||||
mnist_ds = ds.MnistDataset(data_path)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
rescale = 1.0 / 255.0
|
||||
shift = 0.0
|
||||
rescale_nml = 1 / 0.3081
|
||||
shift_nml = -1 * 0.1307 / 0.3081
|
||||
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
||||
rescale_op = CV.Rescale(rescale, shift)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
buffer_size = 10000
|
||||
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
|
||||
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
||||
mnist_ds = mnist_ds.repeat(repeat_size)
|
||||
|
||||
return mnist_ds
|
||||
|
||||
|
||||
class ErrorCallback(Callback):
|
||||
def __init__(self, epoch_num):
|
||||
self.epoch_num = epoch_num
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
epoch_num = cb_params.cur_epoch_num
|
||||
if epoch_num == self.epoch_num:
|
||||
raise RuntimeError("Exec runtime error.")
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ckpt_append_info():
|
||||
"""
|
||||
Feature: Save append info during save ckpt.
|
||||
Description: Save append info during save ckpt.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
network = LeNet5(10)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
||||
model = Model(network, net_loss, net_opt)
|
||||
ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
|
||||
cb_config = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(),
|
||||
append_info=["epoch_num", "step_num"])
|
||||
ckpoint_cb = ModelCheckpoint(prefix='append_info', directory="./", config=cb_config)
|
||||
model.train(3, ds_train, callbacks=ckpoint_cb, dataset_sink_mode=True)
|
||||
file_list = os.listdir(os.getcwd())
|
||||
ckpt_list = [k for k in file_list if k.startswith("append_info")]
|
||||
ckpt_1 = [k for k in ckpt_list if k.startswith("append_info-2")]
|
||||
dict_1 = load_checkpoint(ckpt_1[0])
|
||||
assert dict_1["epoch_num"].data.asnumpy() == 2
|
||||
for file_name in ckpt_list:
|
||||
if os.path.exists(file_name):
|
||||
os.chmod(file_name, stat.S_IWRITE)
|
||||
os.remove(file_name)
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ckpt_error():
|
||||
"""
|
||||
Feature: Save ckpt when error in train.
|
||||
Description: Save ckpt when error in train.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
network = LeNet5(10)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
||||
model = Model(network, net_loss, net_opt)
|
||||
|
||||
print("============== Starting Training ==============")
|
||||
ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
|
||||
cb_config = CheckpointConfig(save_checkpoint_steps=10000, exception_save=True)
|
||||
ckpoint_cb = ModelCheckpoint(prefix='error_ckpt', directory="./", config=cb_config)
|
||||
with pytest.raises(RuntimeError):
|
||||
model.train(3, ds_train, callbacks=[ckpoint_cb, ErrorCallback(2)], dataset_sink_mode=True)
|
||||
file_list = os.listdir(os.getcwd())
|
||||
ckpt_list = [k for k in file_list if k.endswith("_breakpoint.ckpt")]
|
||||
assert os.path.exists(ckpt_list[0])
|
||||
if os.path.exists(ckpt_list[0]):
|
||||
os.chmod(ckpt_list[0], stat.S_IWRITE)
|
||||
os.remove(ckpt_list[0])
|
Loading…
Reference in New Issue