I3AP06: dtype and return value
This commit is contained in:
parent
6e390ff119
commit
1240d57cea
|
@ -26,45 +26,171 @@ __device__ __forceinline__ half SqrtFunc(half input) {
|
|||
return hsqrt(input);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename T, typename S, typename G>
|
||||
__global__ void ApplyAdagradKernel(const size_t size,
|
||||
const bool update_slots,
|
||||
const T *learning_rate,
|
||||
const T *gradient,
|
||||
const S *learning_rate,
|
||||
const G *gradient,
|
||||
T *variable,
|
||||
T *accumulation) {
|
||||
T *accumulation,
|
||||
T *variable_out,
|
||||
T *accumulation_out) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
if (update_slots) {
|
||||
accumulation[i] += gradient[i] * gradient[i];
|
||||
accumulation_out[i] = accumulation[i];
|
||||
}
|
||||
variable[i] -= learning_rate[0] * gradient[i] / SqrtFunc(accumulation[i]);
|
||||
variable_out[i] = variable[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ApplyAdagrad(const size_t size,
|
||||
const bool update_slots,
|
||||
const T *learning_rate,
|
||||
const T *gradient,
|
||||
T *variable,
|
||||
T *accumulation,
|
||||
cudaStream_t cuda_stream) {
|
||||
ApplyAdagradKernel<<< GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
|
||||
size, update_slots, learning_rate, gradient, variable, accumulation);
|
||||
template <>
|
||||
__global__ void ApplyAdagradKernel(const size_t size,
|
||||
const bool update_slots,
|
||||
const float *learning_rate,
|
||||
const half *gradient,
|
||||
half *variable,
|
||||
half *accumulation,
|
||||
half *variable_out,
|
||||
half *accumulation_out) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
if (update_slots) {
|
||||
accumulation[i] += gradient[i] * gradient[i];
|
||||
accumulation_out[i] = accumulation[i];
|
||||
}
|
||||
variable[i] -= __float2half(learning_rate[0]) * gradient[i] / SqrtFunc(accumulation[i]);
|
||||
variable_out[i] = variable[i];
|
||||
}
|
||||
}
|
||||
|
||||
template void ApplyAdagrad<float>(const size_t size,
|
||||
template <>
|
||||
__global__ void ApplyAdagradKernel(const size_t size,
|
||||
const bool update_slots,
|
||||
const float *learning_rate,
|
||||
const half *gradient,
|
||||
float *variable,
|
||||
float *accumulation,
|
||||
float *variable_out,
|
||||
float *accumulation_out) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
if (update_slots) {
|
||||
accumulation[i] += __half2float(gradient[i]) * __half2float(gradient[i]);
|
||||
accumulation_out[i] = accumulation[i];
|
||||
}
|
||||
variable[i] -= learning_rate[0] * __half2float(gradient[i]) / SqrtFunc(accumulation[i]);
|
||||
variable_out[i] = variable[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
__global__ void ApplyAdagradKernel(const size_t size,
|
||||
const bool update_slots,
|
||||
const half *learning_rate,
|
||||
const float *gradient,
|
||||
float *variable,
|
||||
float *accumulation,
|
||||
float *variable_out,
|
||||
float *accumulation_out) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
if (update_slots) {
|
||||
accumulation[i] += gradient[i] * gradient[i];
|
||||
accumulation_out[i] = accumulation[i];
|
||||
}
|
||||
variable[i] -= __half2float(learning_rate[0]) * gradient[i] / SqrtFunc(accumulation[i]);
|
||||
variable_out[i] = variable[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
__global__ void ApplyAdagradKernel(const size_t size,
|
||||
const bool update_slots,
|
||||
const float *learning_rate,
|
||||
const float *gradient,
|
||||
half *variable,
|
||||
half *accumulation,
|
||||
half *variable_out,
|
||||
half *accumulation_out) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
if (update_slots) {
|
||||
accumulation[i] += __float2half(gradient[i]) * __float2half(gradient[i]);
|
||||
accumulation_out[i] = accumulation[i];
|
||||
}
|
||||
variable[i] -= __float2half(learning_rate[0]) * __float2half(gradient[i]) / SqrtFunc(accumulation[i]);
|
||||
variable_out[i] = variable[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename S, typename G>
|
||||
void ApplyAdagrad(const size_t size,
|
||||
const bool update_slots,
|
||||
const S *learning_rate,
|
||||
const G *gradient,
|
||||
T *variable,
|
||||
T *accumulation,
|
||||
T *variable_out,
|
||||
T *accumulation_out,
|
||||
cudaStream_t cuda_stream) {
|
||||
ApplyAdagradKernel<<< GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
|
||||
size, update_slots, learning_rate, gradient, variable, accumulation, variable_out, accumulation_out);
|
||||
}
|
||||
|
||||
template void ApplyAdagrad<float, float, float>(const size_t size,
|
||||
const bool update_slots,
|
||||
const float *learning_rate,
|
||||
const float *gradient,
|
||||
float *variable,
|
||||
float *accumulation,
|
||||
float *variable_out,
|
||||
float *accumulation_out,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template void ApplyAdagrad<half>(const size_t size,
|
||||
template void ApplyAdagrad<half, half, half>(const size_t size,
|
||||
const bool update_slots,
|
||||
const half *learning_rate,
|
||||
const half *gradient,
|
||||
half *variable,
|
||||
half *accumulation,
|
||||
half *variable_out,
|
||||
half *accumulation_out,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template void ApplyAdagrad<half, float, half>(const size_t size,
|
||||
const bool update_slots,
|
||||
const float *learning_rate,
|
||||
const half *gradient,
|
||||
half *variable,
|
||||
half *accumulation,
|
||||
half *variable_out,
|
||||
half *accumulation_out,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template void ApplyAdagrad<float, float, half>(const size_t size,
|
||||
const bool update_slots,
|
||||
const float *learning_rate,
|
||||
const half *gradient,
|
||||
float *variable,
|
||||
float *accumulation,
|
||||
float *variable_out,
|
||||
float *accumulation_out,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template void ApplyAdagrad<float, half, float>(const size_t size,
|
||||
const bool update_slots,
|
||||
const half *learning_rate,
|
||||
const float *gradient,
|
||||
float *variable,
|
||||
float *accumulation,
|
||||
float *variable_out,
|
||||
float *accumulation_out,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template void ApplyAdagrad<half, float, float>(const size_t size,
|
||||
const bool update_slots,
|
||||
const float *learning_rate,
|
||||
const float *gradient,
|
||||
half *variable,
|
||||
half *accumulation,
|
||||
half *variable_out,
|
||||
half *accumulation_out,
|
||||
cudaStream_t cuda_stream);
|
||||
|
|
|
@ -18,13 +18,15 @@
|
|||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ADAGRAD_IMPL_H_
|
||||
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
template <typename T>
|
||||
template <typename T, typename S, typename G>
|
||||
void ApplyAdagrad(const size_t size,
|
||||
const bool update_slots,
|
||||
const T *learning_rate,
|
||||
const T *gradient,
|
||||
const S *learning_rate,
|
||||
const G *gradient,
|
||||
T *variable,
|
||||
T *accumulation,
|
||||
T *variable_out,
|
||||
T *accumulation_out,
|
||||
cudaStream_t stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ADAGRAD_IMPL_H_
|
||||
|
|
|
@ -18,23 +18,59 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
AdagradGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
AdagradGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_THREE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
AdagradGpuKernel, float, float, float)
|
||||
MS_REG_GPU_KERNEL_THREE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
AdagradGpuKernel, half, half, half)
|
||||
MS_REG_GPU_KERNEL_THREE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
AdagradGpuKernel, half, float, half)
|
||||
MS_REG_GPU_KERNEL_THREE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
AdagradGpuKernel, float, float, half)
|
||||
MS_REG_GPU_KERNEL_THREE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
AdagradGpuKernel, float, half, float)
|
||||
MS_REG_GPU_KERNEL_THREE(ApplyAdagrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
AdagradGpuKernel, half, float, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
template <typename T, typename S, typename G>
|
||||
class AdagradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
AdagradGpuKernel()
|
||||
|
@ -36,6 +36,19 @@ class AdagradGpuKernel : public GpuKernel {
|
|||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *variable = GetDeviceAddress<T>(inputs, 0);
|
||||
T *accumulation = GetDeviceAddress<T>(inputs, 1);
|
||||
S *learning_rate = GetDeviceAddress<S>(inputs, 2);
|
||||
G *gradient = GetDeviceAddress<G>(inputs, 3);
|
||||
T *variable_out = GetDeviceAddress<T>(outputs, 0);
|
||||
T *accumulation_out = GetDeviceAddress<T>(outputs, 1);
|
||||
ApplyAdagrad(inputs[0]->size / sizeof(T), update_slots, learning_rate, gradient, variable, accumulation,
|
||||
variable_out, accumulation_out, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
update_slots = AnfAlgo::GetNodeAttr<bool>(kernel_node, "update_slots");
|
||||
|
@ -45,47 +58,35 @@ class AdagradGpuKernel : public GpuKernel {
|
|||
}
|
||||
variable_size_ = sizeof(T);
|
||||
accumulation_size_ = sizeof(T);
|
||||
learning_rate_size_ = sizeof(T);
|
||||
gradient_size_ = sizeof(T);
|
||||
learning_rate_size_ = sizeof(S);
|
||||
gradient_size_ = sizeof(G);
|
||||
|
||||
auto variable_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto variable_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
for (size_t i = 0; i < variable_shape.size(); i++) {
|
||||
variable_size_ *= variable_shape[i];
|
||||
}
|
||||
|
||||
auto accumulation_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto accumulation_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3);
|
||||
for (size_t i = 0; i < accumulation_shape.size(); i++) {
|
||||
accumulation_size_ *= accumulation_shape[i];
|
||||
}
|
||||
|
||||
auto gradient_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3);
|
||||
auto gradient_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
for (size_t i = 0; i < gradient_shape.size(); i++) {
|
||||
gradient_size_ *= gradient_shape[i];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
|
||||
void *stream_ptr) override {
|
||||
T *variable = GetDeviceAddress<T>(inputs, 0);
|
||||
T *accumulation = GetDeviceAddress<T>(inputs, 1);
|
||||
T *learning_rate = GetDeviceAddress<T>(inputs, 2);
|
||||
T *gradient = GetDeviceAddress<T>(inputs, 3);
|
||||
ApplyAdagrad(inputs[0]->size / sizeof(T), update_slots, learning_rate, gradient, variable, accumulation,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(variable_size_);
|
||||
input_size_list_.push_back(accumulation_size_);
|
||||
input_size_list_.push_back(learning_rate_size_);
|
||||
input_size_list_.push_back(gradient_size_);
|
||||
output_size_list_.push_back(0);
|
||||
output_size_list_.push_back(0);
|
||||
output_size_list_.push_back(variable_size_);
|
||||
output_size_list_.push_back(accumulation_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
Loading…
Reference in New Issue