!4716 fix fp16 mean transpose
Merge pull request !4716 from zhaozhenlong/lite/issue/fix_fp16_transpose
This commit is contained in:
commit
10be5005c0
|
@ -43,7 +43,15 @@ int ConcatFp16CPUKernel::Init() {
|
|||
|
||||
int ConcatFp16CPUKernel::ReSize() {
|
||||
FreeTmpBuffer();
|
||||
auto ret = MallocTmpBuffer();
|
||||
if (ret != RET_OK) {
|
||||
FreeTmpBuffer();
|
||||
return ret;
|
||||
}
|
||||
return ConcatBaseCPUKernel::ReSize();
|
||||
}
|
||||
|
||||
int ConcatFp16CPUKernel::MallocTmpBuffer() {
|
||||
for (const auto &in_tensor : in_tensors_) {
|
||||
float16_t *ptr = nullptr;
|
||||
if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) {
|
||||
|
@ -58,10 +66,6 @@ int ConcatFp16CPUKernel::ReSize() {
|
|||
|
||||
auto &out_tensor = out_tensors_.at(0);
|
||||
if (out_tensor->data_type() == kNumberTypeFloat32 || out_tensor->data_type() == kNumberTypeFloat) {
|
||||
if (fp16_output_ != nullptr) {
|
||||
context_->allocator->Free(fp16_output_);
|
||||
fp16_output_ = nullptr;
|
||||
}
|
||||
fp16_output_ =
|
||||
reinterpret_cast<float16_t *>(context_->allocator->Malloc(sizeof(float16_t) * out_tensors_[0]->ElementsNum()));
|
||||
if (fp16_output_ == nullptr) {
|
||||
|
@ -70,17 +74,29 @@ int ConcatFp16CPUKernel::ReSize() {
|
|||
}
|
||||
}
|
||||
|
||||
return ConcatBaseCPUKernel::ReSize();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
void ConcatFp16CPUKernel::FreeTmpBuffer() {
|
||||
for (auto ptr : fp16_inputs_) {
|
||||
if (ptr != nullptr) {
|
||||
context_->allocator->Free(ptr);
|
||||
ptr = nullptr;
|
||||
for (auto i = 0; i < fp16_inputs_.size(); i++) {
|
||||
auto &in_tensor = in_tensors_.at(i);
|
||||
auto in_ptr = fp16_inputs_.at(i);
|
||||
if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) {
|
||||
if (in_ptr != nullptr) {
|
||||
context_->allocator->Free(in_ptr);
|
||||
in_ptr = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
fp16_inputs_.clear();
|
||||
|
||||
auto &out_tensor = out_tensors_.at(0);
|
||||
if (out_tensor->data_type() == kNumberTypeFloat32 || out_tensor->data_type() == kNumberTypeFloat) {
|
||||
if (fp16_output_ != nullptr) {
|
||||
context_->allocator->Free(fp16_output_);
|
||||
fp16_output_ = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int ConcatFp16CPUKernel::Run() {
|
||||
|
@ -119,24 +135,10 @@ int ConcatFp16CPUKernel::Run() {
|
|||
ConcatFp16(reinterpret_cast<void **>(fp16_inputs_.data()), input_num, axis_, inputs_output_shape.data(),
|
||||
output_shape.size(), reinterpret_cast<void *>(fp16_output_));
|
||||
|
||||
// free fp16 in out buffer
|
||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32 || out_tensors_.at(0)->data_type() == kNumberTypeFloat) {
|
||||
Float16ToFloat32(fp16_output_, reinterpret_cast<float *>(output_addr), out_tensors_.at(0)->ElementsNum());
|
||||
context_->allocator->Free(fp16_output_);
|
||||
fp16_output_ = nullptr;
|
||||
}
|
||||
for (auto i = 0; i < fp16_inputs_.size(); i++) {
|
||||
const auto in_tensor = in_tensors_[i];
|
||||
if (in_tensor->data_type() == kNumberTypeFloat || in_tensor->data_type() == kNumberTypeFloat32) {
|
||||
auto ptr = fp16_inputs_[i];
|
||||
if (ptr != nullptr) {
|
||||
context_->allocator->Free(ptr);
|
||||
ptr = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
fp16_inputs_.clear();
|
||||
|
||||
FreeTmpBuffer();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -164,5 +166,5 @@ kernel::LiteKernel *CpuConcatFp16KernelCreator(const std::vector<lite::tensor::T
|
|||
}
|
||||
return kernel;
|
||||
}
|
||||
// REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Concat, CpuConcatFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Concat, CpuConcatFp16KernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -41,6 +41,7 @@ class ConcatFp16CPUKernel : public ConcatBaseCPUKernel {
|
|||
int Run() override;
|
||||
|
||||
private:
|
||||
int MallocTmpBuffer();
|
||||
void FreeTmpBuffer();
|
||||
|
||||
private:
|
||||
|
|
|
@ -58,20 +58,13 @@ int ReduceFp16CPUKernel::Init() {
|
|||
}
|
||||
|
||||
int ReduceFp16CPUKernel::ReSize() {
|
||||
if (fp16_input_ != nullptr) {
|
||||
context_->allocator->Free(fp16_input_);
|
||||
fp16_input_ = nullptr;
|
||||
FreeTmpBuffer();
|
||||
auto ret = MallocTmpBuffer();
|
||||
if (ret != RET_OK) {
|
||||
FreeTmpBuffer();
|
||||
return ret;
|
||||
}
|
||||
auto in_tensor = in_tensors_.front();
|
||||
if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) {
|
||||
fp16_input_ =
|
||||
reinterpret_cast<float16_t *>(context_->allocator->Malloc(in_tensor->ElementsNum() * sizeof(float16_t)));
|
||||
if (fp16_input_ == nullptr) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
Float32ToFloat16(reinterpret_cast<float *>(in_tensor->Data()), fp16_input_, in_tensor->ElementsNum());
|
||||
}
|
||||
return MallocTmpBuffer();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ReduceFp16CPUKernel::CallReduceUnit(int task_id) {
|
||||
|
@ -99,9 +92,13 @@ int ReduceFp16CPUKernel::Run() {
|
|||
|
||||
tmp_shape_ = in_tensors_.at(0)->shape();
|
||||
auto in_tensor = in_tensors_.at(0);
|
||||
if (in_tensor->data_type() == kNumberTypeFloat16) {
|
||||
if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) {
|
||||
auto input_data = reinterpret_cast<float *>(in_tensor->Data());
|
||||
Float32ToFloat16(input_data, fp16_input_, in_tensor->ElementsNum());
|
||||
} else {
|
||||
fp16_input_ = reinterpret_cast<float16_t *>(in_tensor->Data());
|
||||
}
|
||||
|
||||
fp16_src_data_ = fp16_input_;
|
||||
for (int i = 0; i < data_buffers_.size(); ++i) {
|
||||
fp16_dst_data_ = data_buffers_[i];
|
||||
|
@ -117,6 +114,7 @@ int ReduceFp16CPUKernel::Run() {
|
|||
axis_size_ = tmp_shape_[axis];
|
||||
auto error_code = LiteBackendParallelLaunch(ReduceImpl, this, context_->thread_num_);
|
||||
if (error_code != RET_OK) {
|
||||
FreeTmpBuffer();
|
||||
MS_LOG(ERROR) << "Reduce run error, error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
@ -132,16 +130,11 @@ int ReduceFp16CPUKernel::Run() {
|
|||
memcpy(out_tensor->Data(), fp16_dst_data_, out_tensor->ElementsNum() * sizeof(float16_t));
|
||||
}
|
||||
|
||||
if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) {
|
||||
context_->allocator->Free(fp16_input_);
|
||||
}
|
||||
fp16_input_ = nullptr;
|
||||
|
||||
FreeTmpBuffer();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ReduceFp16CPUKernel::FreeTmpBuffer() {
|
||||
void ReduceFp16CPUKernel::FreeTmpBuffer() {
|
||||
for (auto buffer : data_buffers_) {
|
||||
if (buffer != nullptr) {
|
||||
context_->allocator->Free(buffer);
|
||||
|
@ -149,12 +142,17 @@ int ReduceFp16CPUKernel::FreeTmpBuffer() {
|
|||
}
|
||||
}
|
||||
data_buffers_.clear();
|
||||
return RET_OK;
|
||||
|
||||
auto in_tensor = in_tensors_.at(0);
|
||||
if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) {
|
||||
if (fp16_input_ != nullptr) {
|
||||
context_->allocator->Free(fp16_input_);
|
||||
fp16_input_ = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int ReduceFp16CPUKernel::MallocTmpBuffer() {
|
||||
auto ret = FreeTmpBuffer();
|
||||
|
||||
auto input_shape = in_tensors_.at(0)->shape();
|
||||
for (auto i = 0; i < num_axes_; i++) {
|
||||
int axis = axes_[i];
|
||||
|
@ -166,13 +164,23 @@ int ReduceFp16CPUKernel::MallocTmpBuffer() {
|
|||
}
|
||||
float16_t *buffer = reinterpret_cast<float16_t *>(context_->allocator->Malloc(size * sizeof(float16_t)));
|
||||
if (buffer == nullptr) {
|
||||
MS_LOG(ERROR) << "Malloc data failed.";
|
||||
MS_LOG(ERROR) << "Malloc data failed";
|
||||
return RET_ERROR;
|
||||
}
|
||||
data_buffers_.emplace_back(buffer);
|
||||
input_shape[axis] = 1;
|
||||
}
|
||||
return ret;
|
||||
|
||||
auto in_tensor = in_tensors_.front();
|
||||
if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) {
|
||||
fp16_input_ =
|
||||
reinterpret_cast<float16_t *>(context_->allocator->Malloc(in_tensor->ElementsNum() * sizeof(float16_t)));
|
||||
if (fp16_input_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Malloc data failed";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuReduceFp16KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
|
@ -235,6 +243,6 @@ kernel::LiteKernel *CpuMeanFp16KernelCreator(const std::vector<lite::tensor::Ten
|
|||
return kernel;
|
||||
}
|
||||
|
||||
// REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reduce, CpuReduceFp16KernelCreator)
|
||||
// REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Mean, CpuMeanFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reduce, CpuReduceFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Mean, CpuMeanFp16KernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -52,7 +52,7 @@ class ReduceFp16CPUKernel : public ReduceBaseCPUKernel {
|
|||
|
||||
private:
|
||||
int MallocTmpBuffer();
|
||||
int FreeTmpBuffer();
|
||||
void FreeTmpBuffer();
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -72,5 +72,5 @@ int ReshapeCPUKernel::Run() {
|
|||
context_->allocator->Free(input_ptr);
|
||||
}
|
||||
return RET_OK;
|
||||
} // namespace mindspore::kernel
|
||||
}
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -140,5 +140,4 @@ kernel::LiteKernel *CpuSplitFp16KernelCreator(const std::vector<lite::tensor::Te
|
|||
return kernel;
|
||||
}
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Split, CpuSplitFp16KernelCreator)
|
||||
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -59,10 +59,19 @@ int TransposeFp16CPUKernel::ReSize() {
|
|||
param->out_strides_[i] = out_shape[i + 1] * param->out_strides_[i + 1];
|
||||
}
|
||||
|
||||
if (fp16_in_data_ != nullptr) {
|
||||
context_->allocator->Free(fp16_in_data_);
|
||||
fp16_in_data_ = nullptr;
|
||||
FreeFp16Buffer();
|
||||
auto ret = MallocFp16Buffer();
|
||||
if (ret != RET_OK) {
|
||||
FreeFp16Buffer();
|
||||
return ret;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int TransposeFp16CPUKernel::MallocFp16Buffer() {
|
||||
auto &in_tensor = in_tensors_.front();
|
||||
auto &out_tensor = out_tensors_.front();
|
||||
|
||||
if (in_tensor->data_type() == kNumberTypeFloat || in_tensor->data_type() == kNumberTypeFloat32) {
|
||||
fp16_in_data_ =
|
||||
reinterpret_cast<float16_t *>(context_->allocator->Malloc(sizeof(float16_t) * in_tensor->ElementsNum()));
|
||||
|
@ -71,11 +80,6 @@ int TransposeFp16CPUKernel::ReSize() {
|
|||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
if (fp16_out_data_ != nullptr) {
|
||||
context_->allocator->Free(fp16_out_data_);
|
||||
fp16_out_data_ = nullptr;
|
||||
}
|
||||
if (out_tensor->data_type() == kNumberTypeFloat || out_tensor->data_type() == kNumberTypeFloat32) {
|
||||
fp16_out_data_ =
|
||||
reinterpret_cast<float16_t *>(context_->allocator->Malloc(sizeof(float16_t) * out_tensor->ElementsNum()));
|
||||
|
@ -87,6 +91,24 @@ int TransposeFp16CPUKernel::ReSize() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
void TransposeFp16CPUKernel::FreeFp16Buffer() {
|
||||
auto &in_tensor = in_tensors_.front();
|
||||
auto &out_tensor = out_tensors_.front();
|
||||
|
||||
if (in_tensor->data_type() == kNumberTypeFloat || in_tensor->data_type() == kNumberTypeFloat32) {
|
||||
if (fp16_in_data_ != nullptr) {
|
||||
context_->allocator->Free(fp16_in_data_);
|
||||
fp16_in_data_ = nullptr;
|
||||
}
|
||||
}
|
||||
if (out_tensor->data_type() == kNumberTypeFloat || out_tensor->data_type() == kNumberTypeFloat32) {
|
||||
if (fp16_out_data_ != nullptr) {
|
||||
context_->allocator->Free(fp16_out_data_);
|
||||
fp16_out_data_ = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int TransposeFp16CPUKernel::TransposeParallel(int task_id) {
|
||||
int num_unit_thread = MSMIN(thread_h_stride_, num_unit_ - task_id * thread_h_stride_);
|
||||
if (num_unit_thread <= 0) {
|
||||
|
@ -95,13 +117,6 @@ int TransposeFp16CPUKernel::TransposeParallel(int task_id) {
|
|||
int thread_offset = task_id * thread_h_stride_;
|
||||
TransposeParameter *param = reinterpret_cast<TransposeParameter *>(this->op_parameter_);
|
||||
|
||||
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat16) {
|
||||
fp16_in_data_ = reinterpret_cast<float16_t *>(in_tensors_.at(0)->Data());
|
||||
}
|
||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat16) {
|
||||
fp16_out_data_ = reinterpret_cast<float16_t *>(out_tensors_.at(0)->Data());
|
||||
}
|
||||
|
||||
auto ret = DoTranspose(fp16_in_data_, fp16_out_data_, in_shape_, out_shape_, param, thread_offset,
|
||||
thread_offset + num_unit_thread);
|
||||
if (ret != RET_OK) {
|
||||
|
@ -109,12 +124,6 @@ int TransposeFp16CPUKernel::TransposeParallel(int task_id) {
|
|||
return RET_ERROR;
|
||||
}
|
||||
|
||||
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32 || in_tensors_.at(0)->data_type() == kNumberTypeFloat) {
|
||||
context_->allocator->Free(fp16_in_data_);
|
||||
}
|
||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32 || out_tensors_.at(0)->data_type() == kNumberTypeFloat) {
|
||||
context_->allocator->Free(fp16_out_data_);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -139,7 +148,8 @@ int TransposeFp16CPUKernel::Run() {
|
|||
auto &in_tensor = in_tensors_.front();
|
||||
auto &out_tensor = out_tensors_.front();
|
||||
if (in_tensor == nullptr || out_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "null pointer dreferencing.";
|
||||
MS_LOG(ERROR) << "null pointer referencing.";
|
||||
FreeFp16Buffer();
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
|
@ -159,23 +169,15 @@ int TransposeFp16CPUKernel::Run() {
|
|||
ret = LiteBackendParallelLaunch(TransposeRun, this, thread_h_num_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Tranpose error error_code[" << ret << "]";
|
||||
FreeFp16Buffer();
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (in_tensor->data_type() == kNumberTypeFloat || in_tensor->data_type() == kNumberTypeFloat32) {
|
||||
context_->allocator->Free(fp16_in_data_);
|
||||
fp16_in_data_ = nullptr;
|
||||
}
|
||||
if (out_tensor->data_type() == kNumberTypeFloat || out_tensor->data_type() == kNumberTypeFloat32) {
|
||||
out_data_ = reinterpret_cast<float *>(out_tensor->Data());
|
||||
if (out_data_ == nullptr) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
Float16ToFloat32(fp16_out_data_, out_data_, out_tensor->ElementsNum());
|
||||
|
||||
context_->allocator->Free(fp16_out_data_);
|
||||
fp16_out_data_ = nullptr;
|
||||
}
|
||||
FreeFp16Buffer();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -206,5 +208,5 @@ kernel::LiteKernel *CpuTransposeFp16KernelCreator(const std::vector<lite::tensor
|
|||
return kernel;
|
||||
}
|
||||
|
||||
// REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Transpose, CpuTransposeFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Transpose, CpuTransposeFp16KernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -36,6 +36,8 @@ class TransposeFp16CPUKernel : public LiteKernel {
|
|||
int ReSize() override;
|
||||
int Run() override;
|
||||
int TransposeParallel(int task_id);
|
||||
void FreeFp16Buffer();
|
||||
int MallocFp16Buffer();
|
||||
|
||||
private:
|
||||
int thread_num_;
|
||||
|
|
Loading…
Reference in New Issue