!33233 [feat][assistant][I48O6V,I48O66,I48O72]add SparseSegmentSqrtN, SparseSegmentSqrtNGrad, SparseSegmentSqrtNWithNumSegments

Merge pull request !33233 from 桂宁馨/SparseSegmentSqrtN
This commit is contained in:
i-robot 2022-08-03 06:20:28 +00:00 committed by Gitee
commit 0d50b090b2
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
21 changed files with 1458 additions and 0 deletions

View File

@ -0,0 +1,180 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plugin/device/cpu/kernel/sparse_segment_sqrt_n_cpu_kernel.h"
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace {
constexpr size_t kSparseSegmentSqrtNInputsNum = 3;
constexpr size_t kSparseSegmentSqrtNOutputsNum = 1;
#define ADD_KERNEL(t1, t2, t3, t4) \
KernelAttr() \
.AddInputAttr(kNumberType##t1) \
.AddInputAttr(kNumberType##t2) \
.AddInputAttr(kNumberType##t3) \
.AddOutputAttr(kNumberType##t4)
} // namespace
void SparseSegmentSqrtNCpuKernelMod::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = common::AnfAlgo::GetInputTensorNum(kernel_node);
CHECK_KERNEL_INPUTS_NUM(input_num, kSparseSegmentSqrtNInputsNum, kernel_name_);
size_t output_num = common::AnfAlgo::GetOutputTensorNum(kernel_node);
CHECK_KERNEL_OUTPUTS_NUM(output_num, kSparseSegmentSqrtNOutputsNum, kernel_name_);
}
void SparseSegmentSqrtNCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, kIndex0);
dtype1_ = AnfAlgo::GetInputDeviceDataType(kernel_node, kIndex1);
dtype2_ = AnfAlgo::GetInputDeviceDataType(kernel_node, kIndex2);
x_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex0);
indices_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex1);
segment_ids_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex2);
y_shape_ = AnfAlgo::GetOutputDeviceShape(kernel_node, kIndex0);
}
bool SparseSegmentSqrtNCpuKernelMod::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &workspace,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat16) {
if (dtype1_ == kNumberTypeInt32) {
if (dtype2_ == kNumberTypeInt32) {
LaunchKernel<float16, int32_t, int32_t>(inputs, outputs);
} else {
LaunchKernel<float16, int32_t, int64_t>(inputs, outputs);
}
} else {
if (dtype2_ == kNumberTypeInt32) {
LaunchKernel<float16, int64_t, int32_t>(inputs, outputs);
} else {
LaunchKernel<float16, int64_t, int64_t>(inputs, outputs);
}
}
} else if (dtype_ == kNumberTypeFloat32) {
if (dtype1_ == kNumberTypeInt32) {
if (dtype2_ == kNumberTypeInt32) {
LaunchKernel<float, int32_t, int32_t>(inputs, outputs);
} else {
LaunchKernel<float, int32_t, int64_t>(inputs, outputs);
}
} else {
if (dtype2_ == kNumberTypeInt32) {
LaunchKernel<float, int64_t, int32_t>(inputs, outputs);
} else {
LaunchKernel<float, int64_t, int64_t>(inputs, outputs);
}
}
} else if (dtype_ == kNumberTypeFloat64) {
if (dtype1_ == kNumberTypeInt32) {
if (dtype2_ == kNumberTypeInt32) {
LaunchKernel<double, int32_t, int32_t>(inputs, outputs);
} else {
LaunchKernel<double, int32_t, int64_t>(inputs, outputs);
}
} else {
if (dtype2_ == kNumberTypeInt32) {
LaunchKernel<double, int64_t, int32_t>(inputs, outputs);
} else {
LaunchKernel<double, int64_t, int64_t>(inputs, outputs);
}
}
} else {
MS_EXCEPTION(TypeError) << "For '" << kernel_name_ << "', data type of x is " << TypeIdLabel(dtype_)
<< " which is not supported.";
}
return true;
}
template <typename T1, typename T2, typename T3>
void SparseSegmentSqrtNCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
size_t n = std::accumulate(x_shape_.begin(), x_shape_.end(), kIndex1, std::multiplies<int>()) / x_shape_[kIndex0];
size_t m = std::accumulate(segment_ids_shape_.begin(), segment_ids_shape_.end(), kIndex1, std::multiplies<int>());
size_t k = std::accumulate(y_shape_.begin(), y_shape_.end(), kIndex1, std::multiplies<int>());
auto x_shape_0 = static_cast<T2>(x_shape_[kIndex0]);
auto x_addr = reinterpret_cast<T1 *>(inputs[kIndex0]->addr);
auto indices_addr = reinterpret_cast<T2 *>(inputs[kIndex1]->addr);
auto segment_ids_addr = reinterpret_cast<T3 *>(inputs[kIndex2]->addr);
auto y_addr = reinterpret_cast<T1 *>(outputs[kIndex0]->addr);
for (size_t i = 0; i < k; i++) {
y_addr[i] = (T1)0;
}
if (segment_ids_addr[0] != 0) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_
<< "', indices in 'segment_ids' should be contiguous and start from 0.";
}
for (size_t i = 1; i < m; i++) {
if (segment_ids_addr[i] < segment_ids_addr[i - 1]) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', segment_ids should be sorted.";
}
if (segment_ids_addr[i] - segment_ids_addr[i - 1] > 1) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_
<< "', indices in 'segment_ids' should be contiguous and start from 0.";
}
}
for (size_t i = 0; i < m; i++) {
if (indices_addr[i] >= x_shape_0) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', indices out of range of x's first shape.";
}
}
int oldindex = -1;
int countnum = 0;
for (size_t i = 0; i < m; i++) {
if (oldindex == segment_ids_addr[i]) {
countnum++;
} else {
if (countnum != 0) {
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] /= (T1)(sqrt(countnum));
}
}
countnum = 1;
oldindex = segment_ids_addr[i];
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] = (T1)0;
}
}
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] += x_addr[j + indices_addr[i] * n];
}
}
if (countnum != 0) {
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] /= (T1)(sqrt(countnum));
}
}
}
std::vector<KernelAttr> SparseSegmentSqrtNCpuKernelMod::GetOpSupport() {
static std::vector<KernelAttr> kernel_attr_list = {
ADD_KERNEL(Float16, Int32, Int32, Float16), ADD_KERNEL(Float16, Int32, Int64, Float16),
ADD_KERNEL(Float16, Int64, Int32, Float16), ADD_KERNEL(Float16, Int64, Int64, Float16),
ADD_KERNEL(Float32, Int32, Int32, Float32), ADD_KERNEL(Float32, Int32, Int64, Float32),
ADD_KERNEL(Float32, Int64, Int32, Float32), ADD_KERNEL(Float32, Int64, Int64, Float16),
ADD_KERNEL(Float64, Int32, Int32, Float64), ADD_KERNEL(Float64, Int32, Int64, Float64),
ADD_KERNEL(Float64, Int64, Int32, Float64), ADD_KERNEL(Float64, Int64, Int64, Float64)};
return kernel_attr_list;
}
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, SparseSegmentSqrtN, SparseSegmentSqrtNCpuKernelMod);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,60 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_CPU_KERNEL_H_
#include <functional>
#include <numeric>
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/factory/ms_factory.h"
namespace mindspore {
namespace kernel {
class SparseSegmentSqrtNCpuKernelMod : public DeprecatedNativeCpuKernelMod {
public:
SparseSegmentSqrtNCpuKernelMod() = default;
~SparseSegmentSqrtNCpuKernelMod() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T1, typename T2, typename T3>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
protected:
std::vector<KernelAttr> GetOpSupport() override;
private:
void CheckParam(const CNodePtr &kernel_node);
ShapeVector x_shape_;
ShapeVector indices_shape_;
ShapeVector segment_ids_shape_;
ShapeVector y_shape_;
TypeId dtype_{kTypeUnknown};
TypeId dtype1_{kTypeUnknown};
TypeId dtype2_{kTypeUnknown};
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_CPU_KERNEL_H_

View File

@ -0,0 +1,131 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plugin/device/cpu/kernel/sparse_segment_sqrt_n_grad_cpu_kernel.h"
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace {
constexpr size_t kSparseSegmentSqrtNGradInputsNum = 4;
constexpr size_t kSparseSegmentSqrtNGradOutputsNum = 1;
#define ADD_KERNEL(t1, t2, t3, t4, t5) \
KernelAttr() \
.AddInputAttr(kNumberType##t1) \
.AddInputAttr(kNumberType##t2) \
.AddInputAttr(kNumberType##t3) \
.AddInputAttr(kNumberType##t4) \
.AddOutputAttr(kNumberType##t5)
} // namespace
void SparseSegmentSqrtNGradCpuKernelMod::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = common::AnfAlgo::GetInputTensorNum(kernel_node);
CHECK_KERNEL_INPUTS_NUM(input_num, kSparseSegmentSqrtNGradInputsNum, kernel_name_);
size_t output_num = common::AnfAlgo::GetOutputTensorNum(kernel_node);
CHECK_KERNEL_OUTPUTS_NUM(output_num, kSparseSegmentSqrtNGradOutputsNum, kernel_name_);
}
void SparseSegmentSqrtNGradCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
x_dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, kIndex0);
x_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex0);
indices_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex1);
segment_ids_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex2);
output_dim0_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex3);
y_shape_ = AnfAlgo::GetOutputDeviceShape(kernel_node, kIndex0);
}
bool SparseSegmentSqrtNGradCpuKernelMod::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &workspace,
const std::vector<kernel::AddressPtr> &outputs) {
if (x_dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else if (x_dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, outputs);
} else if (x_dtype_ == kNumberTypeFloat64) {
LaunchKernel<double>(inputs, outputs);
} else {
MS_EXCEPTION(TypeError) << "For '" << kernel_name_ << "', data type of x is " << TypeIdLabel(x_dtype_)
<< " which is not supported.";
}
return true;
}
template <typename T>
void SparseSegmentSqrtNGradCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
size_t n = std::accumulate(x_shape_.begin(), x_shape_.end(), kIndex1, std::multiplies<int>()) / x_shape_[kIndex0];
size_t m = std::accumulate(segment_ids_shape_.begin(), segment_ids_shape_.end(), kIndex1, std::multiplies<int>());
size_t num_elements = std::accumulate(y_shape_.begin(), y_shape_.end(), kIndex1, std::multiplies<int>());
int32_t k = *reinterpret_cast<int32_t *>(inputs[kIndex3]->addr);
auto x_shape_0 = static_cast<int32_t>(x_shape_[kIndex0]);
auto x_addr = reinterpret_cast<T *>(inputs[kIndex0]->addr);
auto indices_addr = reinterpret_cast<int32_t *>(inputs[kIndex1]->addr);
auto segment_ids_addr = reinterpret_cast<int32_t *>(inputs[kIndex2]->addr);
auto y_addr = reinterpret_cast<T *>(outputs[kIndex0]->addr);
for (size_t i = 0; i < num_elements; i++) {
y_addr[i] = (T)0;
}
for (size_t i = 1; i < m; i++) {
if (segment_ids_addr[i] < segment_ids_addr[i - 1]) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', segment_ids should be sorted.";
}
}
for (size_t i = 0; i < m; i++) {
if (indices_addr[i] >= x_shape_0) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', indices out of range of x's first shape.";
}
if (segment_ids_addr[i] >= k) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', segment_ids out of range of output_dim0.";
}
}
int beginindex = segment_ids_addr[0];
size_t countnum = 1;
for (size_t i = 1; i < m; i++) {
if (segment_ids_addr[i] != beginindex) {
for (size_t j = 1; j <= countnum; j++) {
for (size_t l = 0; l < n; l++) {
y_addr[indices_addr[i - j] * n + l] += x_addr[beginindex * n + l] / (T)(sqrt(countnum));
}
}
beginindex = segment_ids_addr[i];
countnum = 1;
} else {
countnum++;
}
}
int i = m;
for (size_t j = 1; j <= countnum; j++) {
for (size_t l = 0; l < n; l++) {
y_addr[indices_addr[i - j] * n + l] += x_addr[beginindex * n + l] / (T)(sqrt(countnum));
}
}
}
std::vector<KernelAttr> SparseSegmentSqrtNGradCpuKernelMod::GetOpSupport() {
static std::vector<KernelAttr> kernel_attr_list = {ADD_KERNEL(Float16, Int32, Int32, Int32, Float16),
ADD_KERNEL(Float32, Int32, Int32, Int32, Float32),
ADD_KERNEL(Float64, Int32, Int32, Int32, Float64)};
return kernel_attr_list;
}
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, SparseSegmentSqrtNGrad, SparseSegmentSqrtNGradCpuKernelMod);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,59 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_GRAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_GRAD_CPU_KERNEL_H_
#include <functional>
#include <numeric>
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/factory/ms_factory.h"
namespace mindspore {
namespace kernel {
class SparseSegmentSqrtNGradCpuKernelMod : public DeprecatedNativeCpuKernelMod {
public:
SparseSegmentSqrtNGradCpuKernelMod() = default;
~SparseSegmentSqrtNGradCpuKernelMod() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
protected:
std::vector<KernelAttr> GetOpSupport() override;
private:
void CheckParam(const CNodePtr &kernel_node);
ShapeVector x_shape_;
ShapeVector indices_shape_;
ShapeVector segment_ids_shape_;
ShapeVector output_dim0_shape_;
ShapeVector y_shape_;
TypeId x_dtype_{kTypeUnknown};
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_GRAD_CPU_KERNEL_H_

View File

@ -0,0 +1,171 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "plugin/device/cpu/kernel/sparse_segment_sqrt_n_with_num_segments_cpu_kernel.h"
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace {
constexpr size_t kSparseSegmentSqrtNWithNumSegmentsInputsNum = 4;
constexpr size_t kSparseSegmentSqrtNWithNumSegmentsOutputsNum = 1;
#define ADD_KERNEL(t1, t2, t3, t4, t5) \
KernelAttr() \
.AddInputAttr(kNumberType##t1) \
.AddInputAttr(kNumberType##t2) \
.AddInputAttr(kNumberType##t3) \
.AddInputAttr(kNumberType##t4) \
.AddOutputAttr(kNumberType##t5)
} // namespace
void SparseSegmentSqrtNWithNumSegmentsCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
size_t input_num = common::AnfAlgo::GetInputTensorNum(kernel_node);
CHECK_KERNEL_INPUTS_NUM(input_num, kSparseSegmentSqrtNWithNumSegmentsInputsNum, kernel_name_);
size_t output_num = common::AnfAlgo::GetOutputTensorNum(kernel_node);
CHECK_KERNEL_OUTPUTS_NUM(output_num, kSparseSegmentSqrtNWithNumSegmentsOutputsNum, kernel_name_);
xdtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, kIndex0);
dtype1_ = AnfAlgo::GetInputDeviceDataType(kernel_node, kIndex1);
x_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex0);
indices_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex1);
segment_ids_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex2);
num_segments_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, kIndex3);
y_shape_ = AnfAlgo::GetOutputDeviceShape(kernel_node, kIndex0);
}
bool SparseSegmentSqrtNWithNumSegmentsCpuKernelMod::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &outputs) {
switch (xdtype_) {
case (kNumberTypeFloat16):
if (dtype1_ == kNumberTypeInt32) {
LaunchKernel<float16, int32_t>(inputs, outputs);
break;
} else if (dtype1_ == kNumberTypeInt64) {
LaunchKernel<float16, int64_t>(inputs, outputs);
break;
} else {
MS_EXCEPTION(TypeError) << "For '" << kernel_name_
<< "', data type of indices, segment_ids and num_segments is " << TypeIdLabel(dtype1_)
<< ", which is not supported.";
break;
}
case (kNumberTypeFloat32):
if (dtype1_ == kNumberTypeInt32) {
LaunchKernel<float, int32_t>(inputs, outputs);
break;
} else if (dtype1_ == kNumberTypeInt64) {
LaunchKernel<float, int64_t>(inputs, outputs);
break;
} else {
MS_EXCEPTION(TypeError) << "For '" << kernel_name_
<< "', data type of indices, segment_ids and num_segments is " << TypeIdLabel(dtype1_)
<< ", which is not supported.";
break;
}
case (kNumberTypeFloat64):
if (dtype1_ == kNumberTypeInt32) {
LaunchKernel<double, int32_t>(inputs, outputs);
break;
} else if (dtype1_ == kNumberTypeInt64) {
LaunchKernel<double, int64_t>(inputs, outputs);
break;
} else {
MS_EXCEPTION(TypeError) << "For '" << kernel_name_
<< "', data type of indices, segment_ids and num_segments is " << TypeIdLabel(dtype1_)
<< ", which is not supported.";
break;
}
default:
MS_EXCEPTION(TypeError) << "For '" << kernel_name_ << "', data type of x is " << TypeIdLabel(xdtype_)
<< ", which is not supported.";
}
return true;
}
template <typename T1, typename T2>
void SparseSegmentSqrtNWithNumSegmentsCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
size_t n = std::accumulate(x_shape_.begin(), x_shape_.end(), kIndex1, std::multiplies<int>()) / x_shape_[kIndex0];
size_t m = std::accumulate(segment_ids_shape_.begin(), segment_ids_shape_.end(), kIndex1, std::multiplies<int>());
size_t k = std::accumulate(y_shape_.begin(), y_shape_.end(), kIndex1, std::multiplies<int>());
auto x_shape_0 = static_cast<T2>(x_shape_[kIndex0]);
auto x_addr = reinterpret_cast<T1 *>(inputs[kIndex0]->addr);
auto indices_addr = reinterpret_cast<T2 *>(inputs[kIndex1]->addr);
auto segment_ids_addr = reinterpret_cast<T2 *>(inputs[kIndex2]->addr);
auto num_segments_addr = reinterpret_cast<T2 *>(inputs[kIndex3]->addr);
auto y_addr = reinterpret_cast<T1 *>(outputs[kIndex0]->addr);
for (size_t i = 0; i < k; i++) {
y_addr[i] = (T1)0;
}
for (size_t i = 1; i < m; i++) {
if (segment_ids_addr[i] < segment_ids_addr[i - 1]) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', segment_ids should be sorted.";
}
}
if (segment_ids_addr[m - 1] >= num_segments_addr[kIndex0]) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_
<< "', num_segments must bigger than the last number of segment_ids.";
}
for (size_t i = 0; i < m; i++) {
if (indices_addr[i] >= x_shape_0) {
MS_EXCEPTION(ValueError) << "For '" << kernel_name_ << "', indices out of range of x's first shape.";
}
}
int oldindex = -1;
int countnum = 0;
for (size_t i = 0; i < m; i++) {
if (oldindex == segment_ids_addr[i]) {
countnum++;
} else {
if (countnum != 0) {
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] /= (T1)(sqrt(countnum));
}
}
countnum = 1;
oldindex = segment_ids_addr[i];
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] = (T1)0;
}
}
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] += x_addr[j + indices_addr[i] * n];
}
}
if (countnum != 0) {
for (size_t j = 0; j < n; j++) {
y_addr[j + oldindex * n] /= (T1)(sqrt(countnum));
}
}
}
std::vector<KernelAttr> SparseSegmentSqrtNWithNumSegmentsCpuKernelMod::GetOpSupport() {
static std::vector<KernelAttr> kernel_attr_list = {
ADD_KERNEL(Float16, Int32, Int32, Int32, Float16), ADD_KERNEL(Float16, Int64, Int64, Int64, Float16),
ADD_KERNEL(Float32, Int32, Int32, Int32, Float32), ADD_KERNEL(Float32, Int64, Int64, Int64, Float32),
ADD_KERNEL(Float64, Int32, Int32, Int32, Float64), ADD_KERNEL(Float64, Int64, Int64, Int64, Float64)};
return kernel_attr_list;
}
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, SparseSegmentSqrtNWithNumSegments,
SparseSegmentSqrtNWithNumSegmentsCpuKernelMod);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,59 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_WITH_NUM_SGEMENTS_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_WITH_NUM_SGEMENTS_CPU_KERNEL_H_
#include <functional>
#include <numeric>
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/factory/ms_factory.h"
namespace mindspore {
namespace kernel {
class SparseSegmentSqrtNWithNumSegmentsCpuKernelMod : public DeprecatedNativeCpuKernelMod {
public:
SparseSegmentSqrtNWithNumSegmentsCpuKernelMod() = default;
~SparseSegmentSqrtNWithNumSegmentsCpuKernelMod() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T1, typename T2>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
protected:
std::vector<KernelAttr> GetOpSupport() override;
private:
ShapeVector x_shape_;
ShapeVector indices_shape_;
ShapeVector segment_ids_shape_;
ShapeVector num_segments_shape_;
ShapeVector y_shape_;
TypeId xdtype_{kTypeUnknown};
TypeId dtype1_{kTypeUnknown};
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_SEGMENT_SQRT_N_WITH_NUM_SGEMENTS_CPU_KERNEL_H_

View File

@ -120,6 +120,9 @@ constexpr auto kCross = "Cross";
constexpr auto kEditDistance = "EditDistance";
constexpr auto kNextAfter = "NextAfter";
constexpr auto kSparseSegmentMean = "SparseSegmentMean";
constexpr auto kSparseSegmentSqrtN = "SparseSegmentSqrtN";
constexpr auto kSparseSegmentSqrtNGrad = "SparseSegmentSqrtNGrad";
constexpr auto kSparseSegmentSqrtNWithNumSegments = "SparseSegmentSqrtNWithNumSegments";
constexpr auto kTridiagonalMatMul = "TridiagonalMatMul";
constexpr auto kFFTWithSize = "FFTWithSize";
@ -1085,6 +1088,10 @@ GVAR_DEF(PrimitivePtr, kPrimBucketize, std::make_shared<Primitive>("Bucketize"))
GVAR_DEF(PrimitivePtr, kPrimEinsum, std::make_shared<Primitive>("Einsum"));
GVAR_DEF(PrimitivePtr, kPrimEinsumGrad, std::make_shared<Primitive>("EinsumGrad"));
GVAR_DEF(PrimitivePtr, kPrimSparseSegmentMean, std::make_shared<Primitive>(kSparseSegmentMean));
GVAR_DEF(PrimitivePtr, kPrimSparseSegmentSqrtN, std::make_shared<Primitive>("SparseSegmentSqrtN"));
GVAR_DEF(PrimitivePtr, kPrimSparseSegmentSqrtNGrad, std::make_shared<Primitive>("SparseSegmentSqrtNGrad"));
GVAR_DEF(PrimitivePtr, kPrimSparseSegmentSqrtNWithNumSegments,
std::make_shared<Primitive>("SparseSegmentSqrtNWithNumSegments"));
GVAR_DEF(PrimitivePtr, kPrimTrace, std::make_shared<Primitive>("Trace"));
GVAR_DEF(PrimitivePtr, kPrimTraceGrad, std::make_shared<Primitive>("TraceGrad"));
GVAR_DEF(PrimitivePtr, kPrimTridiagonalMatMul, std::make_shared<Primitive>(kTridiagonalMatMul));

View File

@ -0,0 +1,102 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ops/grad/sparse_segment_sqrt_n_grad.h"
#include "abstract/dshape.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
#include "utils/tensor_construct_utils.h"
#include "abstract/ops/primitive_infer_map.h"
#include "mindapi/src/helper.h"
namespace mindspore {
namespace ops {
namespace {
abstract::ShapePtr SparseSegmentSqrtNGradInferShape(const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto prim_name = prim->name();
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex0]->BuildShape())[kShape];
auto indices_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex1]->BuildShape())[kShape];
auto segment_ids_shape =
CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex2]->BuildShape())[kShape];
auto output_dim0_shape =
CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex3]->BuildShape())[kShape];
if (x_shape.size() < kInputIndex1) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', tensor x's rank less than 1.";
}
if (output_dim0_shape.size() != kInputIndex0) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', tensor outputdim0 should be a scalar.";
}
if (indices_shape[kInputIndex0] != segment_ids_shape[kInputIndex0]) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', tensor indices & segment_ids's ranks mismatch.";
}
if (!input_args[kInputIndex3]->BuildValue()->isa<AnyValue>() &&
!input_args[kInputIndex3]->BuildValue()->isa<None>()) {
auto output_dim0_value = input_args[kInputIndex3]->cast<abstract::AbstractTensorPtr>();
MS_EXCEPTION_IF_NULL(output_dim0_value);
auto output_dim0_value_ptr = output_dim0_value->BuildValue();
MS_EXCEPTION_IF_NULL(output_dim0_value_ptr);
auto output_dim0_value_ptr_tensor =
CheckAndConvertUtils::CheckTensorIntValue("output_dim0", output_dim0_value_ptr, prim_name);
size_t dim_zero = output_dim0_value_ptr_tensor[kInputIndex0];
if (dim_zero <= kInputIndex0) {
MS_EXCEPTION(ValueError) << "Input output_dim0 must > 0!";
} else {
ShapeVector y_shape = x_shape;
y_shape[kInputIndex0] = dim_zero;
return std::make_shared<abstract::Shape>(y_shape);
}
} else {
std::vector<int64_t> output_shape = {-2};
std::vector<int64_t> min_shape = {1};
std::vector<int64_t> max_shape = {1};
return std::make_shared<abstract::Shape>(output_shape, min_shape, max_shape);
}
}
TypePtr SparseSegmentSqrtNGradInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto x_type = input_args[kInputIndex0]->BuildType();
auto indices_type = input_args[kInputIndex1]->BuildType();
auto segment_ids_type = input_args[kInputIndex2]->BuildType();
auto output_dim0_type = input_args[kInputIndex3]->BuildType();
(void)CheckAndConvertUtils::CheckTensorTypeValid("x", x_type, {kFloat16, kFloat32, kFloat64}, prim->name());
std::map<std::string, TypePtr> types;
(void)types.emplace("indices", indices_type);
(void)types.emplace("segment_ids", segment_ids_type);
(void)types.emplace("output_dim0", output_dim0_type);
(void)CheckAndConvertUtils::CheckTensorTypeSame(types, {kInt32}, prim->name());
return input_args[kInputIndex0]->BuildType();
}
} // namespace
MIND_API_OPERATOR_IMPL(SparseSegmentSqrtNGrad, BaseOperator);
AbstractBasePtr SparseSegmentSqrtNGradInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto prim_name = prim->name();
const int64_t input_num = kInputIndex4;
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, prim_name);
auto types = SparseSegmentSqrtNGradInferType(prim, input_args);
auto shapes = SparseSegmentSqrtNGradInferShape(prim, input_args);
return abstract::MakeAbstract(shapes, types);
}
REGISTER_HOST_DEPENDS(kNameSparseSegmentSqrtNGrad, {3});
REGISTER_PRIMITIVE_EVAL_IMPL(SparseSegmentSqrtNGrad, prim::kPrimSparseSegmentSqrtNGrad, SparseSegmentSqrtNGradInfer,
nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,47 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_GRAD_H_
#define MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_GRAD_H_
#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "ops/base_operator.h"
#include "mindapi/base/types.h"
namespace mindspore {
namespace ops {
constexpr auto kNameSparseSegmentSqrtNGrad = "SparseSegmentSqrtNGrad";
class MIND_API SparseSegmentSqrtNGrad : public BaseOperator {
public:
MIND_API_BASE_MEMBER(SparseSegmentSqrtNGrad);
SparseSegmentSqrtNGrad() : BaseOperator(kNameSparseSegmentSqrtNGrad) {
InitIOName({"x", "indices", "segment_ids", "output_dim0"}, {"y"});
}
};
abstract::AbstractBasePtr SparseSegmentSqrtNGradInfer(const abstract::AnalysisEnginePtr &,
const PrimitivePtr &primitive,
const std::vector<abstract::AbstractBasePtr> &input_args);
using PrimSparseSegmentSqrtNGradPtr = std::shared_ptr<SparseSegmentSqrtNGrad>;
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_GRAD_H_

View File

@ -0,0 +1,104 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <set>
#include <map>
#include <string>
#include <vector>
#include <memory>
#include <algorithm>
#include <iostream>
#include "ops/sparse_segment_sqrt_n.h"
#include "abstract/dshape.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
#include "utils/tensor_construct_utils.h"
#include "abstract/ops/primitive_infer_map.h"
#include "mindapi/src/helper.h"
namespace mindspore {
namespace ops {
namespace {
abstract::ShapePtr SparseSegmentSqrtNInferShape(const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto prim_name = prim->name();
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex0]->BuildShape())[kShape];
auto indices_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex1]->BuildShape())[kShape];
auto segment_ids_shape =
CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex2]->BuildShape())[kShape];
(void)CheckAndConvertUtils::CheckInteger("indices_shape", SizeToLong(indices_shape.size()), kEqual, kInputIndex1,
prim->name());
(void)CheckAndConvertUtils::CheckInteger("segment_ids_shape", SizeToLong(segment_ids_shape.size()), kEqual,
kInputIndex1, prim->name());
if (x_shape.size() < kInputIndex1) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', x's rank less than 1.";
}
if (indices_shape[kInputIndex0] != segment_ids_shape[kInputIndex0]) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', ranks of indices and segment_ids mismatch.";
}
if (!input_args[kInputIndex2]->BuildValue()->isa<AnyValue>() &&
!input_args[kInputIndex2]->BuildValue()->isa<None>()) {
auto segment_ids_value_ptr = input_args[kInputIndex2]->BuildValue();
MS_EXCEPTION_IF_NULL(segment_ids_value_ptr);
auto segment_ids_value_ptr_tensor =
CheckAndConvertUtils::CheckTensorIntValue("segment_ids", segment_ids_value_ptr, prim->name());
size_t dim_zero = segment_ids_value_ptr_tensor.back() + kInputIndex1;
if (dim_zero < kInputIndex1) {
MS_EXCEPTION(ValueError) << "For '" << prim_name << "', segment_ids must >= 0!";
} else {
ShapeVector y_shape = x_shape;
y_shape[kInputIndex0] = dim_zero;
return std::make_shared<abstract::Shape>(y_shape);
}
} else {
std::vector<int64_t> output_shape = {-2};
std::vector<int64_t> min_shape = {1};
std::vector<int64_t> max_shape = {1};
return std::make_shared<abstract::Shape>(output_shape, min_shape, max_shape);
}
}
TypePtr SparseSegmentSqrtNInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto x_type = input_args[kInputIndex0]->BuildType();
auto indices_type = input_args[kInputIndex1]->BuildType();
auto segment_ids_type = input_args[kInputIndex2]->BuildType();
const std::set<TypePtr> valid_types = {kFloat16, kFloat32, kFloat64};
const std::set<TypePtr> common_valid_types = {kInt32, kInt64};
CheckAndConvertUtils::CheckTensorTypeValid("x", x_type, valid_types, prim->name());
CheckAndConvertUtils::CheckTensorTypeValid("indices", indices_type, common_valid_types, prim->name());
CheckAndConvertUtils::CheckTensorTypeValid("segment_ids", segment_ids_type, common_valid_types, prim->name());
return input_args[kInputIndex0]->BuildType();
}
} // namespace
MIND_API_OPERATOR_IMPL(SparseSegmentSqrtN, BaseOperator);
AbstractBasePtr SparseSegmentSqrtNInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto prim_name = prim->name();
const int64_t input_num = kInputIndex3;
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, prim_name);
auto types = SparseSegmentSqrtNInferType(prim, input_args);
auto shapes = SparseSegmentSqrtNInferShape(prim, input_args);
return abstract::MakeAbstract(shapes, types);
}
REGISTER_HOST_DEPENDS(kNameSparseSegmentSqrtN, {2});
REGISTER_PRIMITIVE_EVAL_IMPL(SparseSegmentSqrtN, prim::kPrimSparseSegmentSqrtN, SparseSegmentSqrtNInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,42 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_H_
#define MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_H_
#include <set>
#include <map>
#include <vector>
#include <string>
#include <memory>
#include "ops/base_operator.h"
#include "mindapi/base/types.h"
namespace mindspore {
namespace ops {
constexpr auto kNameSparseSegmentSqrtN = "SparseSegmentSqrtN";
class MIND_API SparseSegmentSqrtN : public BaseOperator {
public:
MIND_API_BASE_MEMBER(SparseSegmentSqrtN);
SparseSegmentSqrtN() : BaseOperator(kNameSparseSegmentSqrtN) { InitIOName({"x", "indices", "segment_ids"}, {"y"}); }
};
abstract::AbstractBasePtr SparseSegmentSqrtNInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<abstract::AbstractBasePtr> &input_args);
using PrimSparseSegmentSqrtNPtr = std::shared_ptr<SparseSegmentSqrtN>;
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_H_

View File

@ -0,0 +1,120 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <set>
#include <map>
#include <string>
#include <vector>
#include <memory>
#include <algorithm>
#include "ops/sparse_segment_sqrt_n_with_num_segments.h"
#include "abstract/dshape.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
#include "utils/tensor_construct_utils.h"
#include "abstract/ops/primitive_infer_map.h"
#include "mindapi/src/helper.h"
namespace mindspore {
namespace ops {
namespace {
abstract::ShapePtr SparseSegmentSqrtNWithNumSegmentsInferShape(const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto prim_name = prim->name();
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex0]->BuildShape())[kShape];
auto indices_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex1]->BuildShape())[kShape];
auto segment_ids_shape =
CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex2]->BuildShape())[kShape];
auto num_segments_shape =
CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex3]->BuildShape())[kShape];
(void)CheckAndConvertUtils::CheckInteger("indices_shape", indices_shape.size(), kEqual, kInputIndex1, prim->name());
(void)CheckAndConvertUtils::CheckInteger("segment_ids_shape", segment_ids_shape.size(), kEqual, kInputIndex1,
prim->name());
if (x_shape.size() < kInputIndex1) {
MS_EXCEPTION(ValueError) << "For " << prim_name << ", rank of x cannot less than 1.";
}
if (indices_shape[kInputIndex0] != segment_ids_shape[kInputIndex0]) {
MS_EXCEPTION(ValueError) << "For " << prim_name << ", rank of indices and segment_ids mismatch.";
}
if (num_segments_shape.size() > kInputIndex1) {
MS_EXCEPTION(ValueError) << "For " << prim_name << ", num_segments should be at most 1-D.";
}
if (num_segments_shape.size() == kInputIndex1) {
if (num_segments_shape[kInputIndex0] != kInputIndex1) {
MS_EXCEPTION(ValueError) << "For " << prim_name << ", the num element of num_segments should be 1.";
}
}
if (!input_args[kInputIndex3]->BuildValue()->isa<AnyValue>() &&
!input_args[kInputIndex3]->BuildValue()->isa<None>()) {
auto num_segments_value = input_args[kInputIndex3]->cast<abstract::AbstractTensorPtr>();
MS_EXCEPTION_IF_NULL(num_segments_value);
auto num_segments_value_ptr = num_segments_value->BuildValue();
MS_EXCEPTION_IF_NULL(num_segments_value_ptr);
auto num_segments_value_ptr_tensor =
CheckAndConvertUtils::CheckTensorIntValue("num_segments", num_segments_value_ptr, prim->name());
size_t dim_zero = num_segments_value_ptr_tensor.back();
if (dim_zero < kInputIndex1) {
MS_EXCEPTION(ValueError) << "For " << prim_name
<< ", num_segments must bigger than the last number of segment_ids.";
} else {
ShapeVector y_shape = x_shape;
y_shape[kInputIndex0] = dim_zero;
return std::make_shared<abstract::Shape>(y_shape);
}
} else {
std::vector<int64_t> output_shape = {-2};
std::vector<int64_t> min_shape = {1};
std::vector<int64_t> max_shape = {1};
return std::make_shared<abstract::Shape>(output_shape, min_shape, max_shape);
}
}
TypePtr SparseSegmentSqrtNWithNumSegmentsInferType(const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto x_type = input_args[kInputIndex0]->BuildType();
auto indices_type = input_args[kInputIndex1]->BuildType();
auto segment_ids_type = input_args[kInputIndex2]->BuildType();
auto num_segments_type = input_args[kInputIndex3]->BuildType();
const std::set<TypePtr> valid_types = {kFloat16, kFloat32, kFloat64};
std::map<std::string, TypePtr> types;
(void)CheckAndConvertUtils::CheckTensorTypeValid("x", x_type, valid_types, prim->name());
(void)types.emplace("indices", indices_type);
(void)types.emplace("segment_ids", segment_ids_type);
(void)types.emplace("num_segments", num_segments_type);
(void)CheckAndConvertUtils::CheckTensorTypeSame(types, {kInt32, kInt64}, prim->name());
return input_args[kInputIndex0]->BuildType();
}
} // namespace
MIND_API_OPERATOR_IMPL(SparseSegmentSqrtNWithNumSegments, BaseOperator);
AbstractBasePtr SparseSegmentSqrtNWithNumSegmentsInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &prim,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(prim);
auto prim_name = prim->name();
const int64_t input_num = kInputIndex4;
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, prim_name);
auto types = SparseSegmentSqrtNWithNumSegmentsInferType(prim, input_args);
auto shapes = SparseSegmentSqrtNWithNumSegmentsInferShape(prim, input_args);
return abstract::MakeAbstract(shapes, types);
}
REGISTER_HOST_DEPENDS(kNameSparseSegmentSqrtNWithNumSegments, {3});
REGISTER_PRIMITIVE_EVAL_IMPL(SparseSegmentSqrtNWithNumSegments, prim::kPrimSparseSegmentSqrtNWithNumSegments,
SparseSegmentSqrtNWithNumSegmentsInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,45 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_WITH_NUM_SEGMENTS_H_
#define MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_WITH_NUM_SEGMENTS_H_
#include <set>
#include <map>
#include <vector>
#include <string>
#include <memory>
#include "ops/base_operator.h"
#include "mindapi/base/types.h"
namespace mindspore {
namespace ops {
constexpr auto kNameSparseSegmentSqrtNWithNumSegments = "SparseSegmentSqrtNWithNumSegments";
class MIND_API SparseSegmentSqrtNWithNumSegments : public BaseOperator {
public:
MIND_API_BASE_MEMBER(SparseSegmentSqrtNWithNumSegments);
SparseSegmentSqrtNWithNumSegments() : BaseOperator(kNameSparseSegmentSqrtNWithNumSegments) {
InitIOName({"x", "indices", "segment_ids", "num_segments"}, {"y"});
}
};
abstract::AbstractBasePtr SparseSegmentSqrtNWithNumSegmentsInfer(
const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<abstract::AbstractBasePtr> &input_args);
using PrimSparseSegmentSqrtNWithNumSegmentsPtr = std::shared_ptr<SparseSegmentSqrtNWithNumSegments>;
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_SPARSE_SEGMENT_SQRT_N_WITH_NUM_SEGMENTS_H_

View File

@ -16,6 +16,13 @@
"""bprop primitives"""
from mindspore.ops.operations.sparse_ops import CSRSparseMatrixToSparseTensor
from mindspore.ops.operations.sparse_ops import SparseTensorToCSRSparseMatrix
from mindspore.ops.operations.sparse_ops import SparseSegmentSqrtN
from mindspore.ops.operations.sparse_ops import SparseSegmentSqrtNWithNumSegments
from mindspore.common import dtype as mstype
from .. import functional as F
from .. import operations as P
from ..composite.multitype_ops.zeros_like_impl import zeros_like
from ..operations import _grad_ops as G
from .._grad.grad_base import bprop_getters
@ -45,3 +52,36 @@ def get_bprop_csr_sparse_matrix_to_sparse_tensor(self):
return dx_all
return bprop
@bprop_getters.register(SparseSegmentSqrtN)
def get_bprop_sparse_segment_sqrt_n(self):
"""Grad definition for `SparseSegmentSqrtN` operation."""
input_grad = G.SparseSegmentSqrtNGrad()
shape = P.Shape()
def bprop(x, indices, segment_ids, out, dout):
output_dim0 = F.scalar_to_tensor(shape(x)[0], mstype.int32)
indices = F.cast(indices, mstype.int32)
segment_ids = F.cast(segment_ids, mstype.int32)
dx = input_grad(dout, indices, segment_ids, output_dim0)
return dx, zeros_like(indices), zeros_like(segment_ids)
return bprop
@bprop_getters.register(SparseSegmentSqrtNWithNumSegments)
def get_bprop_sparse_segment_sqrt_n_with_num_segments(self):
"""Grad definition for `SparseSegmentSqrtNWithNumSegments` operation."""
input_grad = G.SparseSegmentSqrtNGrad()
shape = P.Shape()
def bprop(x, indices, segment_ids, num_segments, out, dout):
output_dim0 = F.scalar_to_tensor(shape(x)[0], mstype.int32)
indices = F.cast(indices, mstype.int32)
segment_ids = F.cast(segment_ids, mstype.int32)
dx = input_grad(dout, indices, segment_ids, output_dim0)
all_d = (dx, zeros_like(indices), zeros_like(segment_ids), zeros_like(num_segments))
return all_d
return bprop

View File

@ -268,6 +268,9 @@ from .segment_mean import _segment_mean_aicpu
from .segment_min import _segment_min_aicpu
from .segment_prod import _segment_prod_aicpu
from .segment_sum import _segment_sum_aicpu
from .sparse_segment_sqrt_n import _sparse_segment_sqrt_n_aicpu
from .sparse_segment_sqrt_n_grad import _sparse_segment_sqrt_n_grad_aicpu
from .sparse_segment_sqrt_n_with_num_segments import _sparse_segment_sqrt_n_with_num_segments_aicpu
from .scatter_nd_max import _scatter_nd_max_aicpu
from .conj import _conj_aicpu
from .ctc_loss_v2 import _ctc_loss_v2_aicpu

View File

@ -0,0 +1,43 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SparseSegmentSqrtN op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
sparse_segment_sqrt_n_op_info = AiCPURegOp("SparseSegmentSqrtN") \
.fusion_type("OPAQUE") \
.input(0, "x", "required") \
.input(1, "indices", "required") \
.input(2, "segment_ids", "required") \
.output(0, "y", "required") \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default, DataType.F16_Default) \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I64_Default, DataType.F16_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I32_Default, DataType.F16_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.F32_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I64_Default, DataType.F32_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I32_Default, DataType.F32_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default, DataType.F32_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default, DataType.F64_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I64_Default, DataType.F64_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I32_Default, DataType.F64_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default, DataType.F64_Default) \
.get_op_info()
@op_info_register(sparse_segment_sqrt_n_op_info)
def _sparse_segment_sqrt_n_aicpu():
"""SparseSegmentSqrtN AiCPU register"""
return

View File

@ -0,0 +1,38 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SparseSegmentSqrtNGrad op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
sparse_segment_sqrt_n_grad_op_info = AiCPURegOp("SparseSegmentSqrtNGrad") \
.fusion_type("OPAQUE") \
.input(0, "x", "required") \
.input(1, "indices", "required") \
.input(2, "segment_ids", "required") \
.input(3, "output_dim0", "required") \
.output(0, "y", "required") \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default,
DataType.I32_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default,
DataType.I32_Default, DataType.F32_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default,
DataType.I32_Default, DataType.F64_Default) \
.get_op_info()
@op_info_register(sparse_segment_sqrt_n_grad_op_info)
def _sparse_segment_sqrt_n_grad_aicpu():
"""SparseSegmentSqrtNGrad AiCPU register"""
return

View File

@ -0,0 +1,44 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SparseSegmentSqrtNWithNumSegments op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
sparse_segment_sqrt_n_with_num_segments_op_info = AiCPURegOp("SparseSegmentSqrtNWithNumSegments") \
.fusion_type("OPAQUE") \
.input(0, "x", "required") \
.input(1, "indices", "required") \
.input(2, "segment_ids", "required") \
.input(3, "num_segments", "required") \
.output(0, "y", "required") \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default,
DataType.I32_Default, DataType.F16_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default,
DataType.I64_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default,
DataType.I32_Default, DataType.F32_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default,
DataType.I64_Default, DataType.F32_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default,
DataType.I32_Default, DataType.F64_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default,
DataType.I64_Default, DataType.F64_Default) \
.get_op_info()
@op_info_register(sparse_segment_sqrt_n_with_num_segments_op_info)
def _sparse_segment_sqrt_n_with_num_segments_aicpu():
"""SparseSegmentSqrtNWithNumSegments AiCPU register"""
return

View File

@ -3332,6 +3332,46 @@ class MedianGrad(Primitive):
self.init_prim_io_names(inputs=['y_grad', 'x', 'y', 'indices'], outputs=['x_grad'])
class SparseSegmentSqrtNGrad(Primitive):
"""
Computes gradients for SparseSegmentSqrtNGrad operation.
Inputs:
- **x** (Tensor) - A tensor.
- **indices** (Tensor) - Indices is a 1-D tensor. Must be one of the following types: int32, int64.
Has same rank as segment_ids. The shape should be :math:`(N,)`.
- **segment_ids** (Tensor) - Segment_ids is a 1-D tensor. Must be one of the following types: int32, int64.
Values should be sorted and can be repeated. The shape should be :math:`(N,)`.
- **output_dim0** (Tensor) - Output_dim0 is a 0-D tensor. Dimension 0 of `x` passed to SparseSegmentSqrtN op.
Outputs:
A Tensor. Has the same type as `x` .
Has same shape as `x`, except for dimension 0 which is the value of `output_dim0`.
Raises:
TypeError: If `x` or `indices` or `segment_ids` or `output_dim0` is not a tensor.
TypeError: If the dtype of `x` is not any of the following data types: {float16, float32, float64}.
TypeError: If the dtype of `indices` is not int32.
TypeError: If the dtype of `segment_ids` is not int32.
TypeError: If the dtype of `output_dim0` is not int32.
ValueError: If dimension size of `x` less than 1.
ValueError: If rank of `indices` or `segment_ids` is not 1.
ValueError: If dimension size of `output_dim0` is not 0.
ValueError: If shape[0] of `indices` is not corresponding to shape[0] of `segment_ids`.
ValueError: If indices in `segment_ids` are not contiguous or do not start from 0.
ValueError: If `segment_ids` is not sorted.
ValueError: If `indices` is out of range of x's first shape.
Supported Platforms:
``Ascend`` ``CPU``
"""
@prim_attr_register
def __init__(self):
"""Initialize SparseSegmentSqrtNGrad"""
self.init_prim_io_names(inputs=['x', 'indices', 'segment_ids', 'output_dim0'], outputs=['y'])
class GridSampler2DGrad(Primitive):
"""
Computes gradients for GridSampler2D operation.

View File

@ -588,6 +588,114 @@ class SparseConcat(Primitive):
validator.check_value_type("concat_dim", concat_dim, [int], self.name)
class SparseSegmentSqrtN(Primitive):
"""
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
N is the size of the segment being reduced.
Inputs:
- **x** (Tensor) - A tensor.
- **indices** (Tensor) - Indices is a 1-D tensor. Must be one of the following types: int32, int64.
Has same rank as segment_ids. The shape should be :math:`(N,)`.
- **segment_ids** (Tensor) - Segment_ids is a 1-D tensor. Must be one of the following types: int32, int64.
Values should be sorted and can be repeated. The shape should be :math:`(N,)`.
Outputs:
A Tensor. Has the same type as `x` .
Has same shape as `x`, except for dimension 0 which is the number of segments.
Raises:
TypeError: If `x` or `indices` or `segment_ids` is not a tensor.
TypeError: If the dtype of `x` is not any of the following data types: {float16, float32, float64}.
TypeError: If the dtype of `indices` is not int32 or int64.
TypeError: If the dtype of `segment_ids` is not int32 or int64.
ValueError: If dimension size of `x` less than 1.
ValueError: If any of `indices` and `segment_ids` is not a 1-D tensor.
ValueError: If shape[0] of `indices` is not corresponding to shape[0] of `segment_ids`.
ValueError: If indices in `segment_ids` are not contiguous or do not start from 0.
ValueError: If `segment_ids` is not sorted.
ValueError: If `indices` is out of range of x's first shape.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> x = Tensor(np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]]).astype(np.float32))
>>> indices = Tensor(np.array([0,1,2]).astype(np.int32))
>>> segment_ids = Tensor(np.array([0,1,2]).astype(np.int32))
>>> sparse_segment_sqrt_n = SparseSegmentSqrtN()
>>> output = sparse_segment_sqrt_n(x, indices, segment_ids)
>>> print(output)
[[ 1. 2. 3. 4.]
[ 5. 6. 7. 8.]
[ 9. 10. 11. 12.]]
"""
@prim_attr_register
def __init__(self):
"""Initialize SparseSegmentSqrtN"""
self.init_prim_io_names(
inputs=['x', 'indices', 'segment_ids'], outputs=['y'])
class SparseSegmentSqrtNWithNumSegments(Primitive):
"""
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
N is the size of the segment being reduced.
Like SparseSegmentSqrtN, but allows missing ids in segment_ids.
If an id is missing, the output tensor at that position will be zeroed.
Inputs:
- **x** (Tensor) - A Tensor.
- **indices** (Tensor) - 1-D Tensor. Must be one of the following types: int32, int64.
Has same rank as segment_ids. The shape should be :math:`(N,)`.
- **segment_ids** (Tensor) - Segment_ids: 1-D Tensor. Must be one of the following types: int32, int64.
Values should be sorted and can be repeated. The shape should be :math:`(N,)`.
- **num_segments** (Tensor) - Num_segments should equal the number of distinct segment_ids.
Outputs:
A Tensor. Has the same type as `x` .
Has same shape as `x`, except for dimension 0 which is the value of `num_segments`.
Raises:
TypeError: If `x` or `indices` or `segment_ids` or `num_segments` is not a tensor.
TypeError: If the dtype of `x` is not any of the following data types: {float16, float32, float64}.
TypeError: If the dtype of `indices` and `segment_ids` and `num_segments` is not int32 or int64.
TypeError: If dtype of `segment_ids` and `indices` mismatch.
TypeError: If dtype of `num_segments` and `indices` mismatch.
ValueError: If dimension size of `x` less than 1.
ValueError: If any of `indices` and `segment_ids` is not a 1-D tensor.
ValueError: If rank of `num_segments` is bigger than 1.
ValueError: If numelements of `num_segments` is not 1.
ValueError: If the first dimension of `indices` is not equal to the first dimension of `segment_ids`.
ValueError: If `segment_ids` is not sorted.
ValueError: If the last number of `segment_ids` is bigger than or equal to `num_segments`.
ValueError: If `indices` is out of range of x's first shape.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> x = Tensor([[0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0]], dtype=ms.float16)
>>> indices = Tensor([0, 2, 1], dtype=ms.int32)
>>> segment_ids = Tensor([0, 1, 2], dtype=ms.int32)
>>> num_segments = Tensor([4], dtype=ms.int32)
>>> sparse_segment_sqrt_n_with_num_segments = SparseSegmentSqrtNWithNumSegments()
>>> output = sparse_segment_sqrt_n_with_num_segments(x, indices, segment_ids, num_segments)
>>> print(output)
[[0. 1. 0. 0.]
[1. 0. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.]]
"""
@prim_attr_register
def __init__(self):
"""Initialize SparseSegmentSqrtNWithNumSegments"""
self.init_prim_io_names(
inputs=['x', 'indices', 'segment_ids', 'num_segemnts'], outputs=['y'])
class SparseMatrixNNZ(Primitive):
r"""
Count number of the non-zero elements in sparse matrix or sparse matrixs.

View File

@ -125,6 +125,8 @@ from mindspore.ops.operations.sparse_ops import SparseMatrixTranspose
from mindspore.ops.operations.sparse_ops import CSRSparseMatrixToSparseTensor
from mindspore.ops.operations.sparse_ops import SparseTensorToCSRSparseMatrix
from mindspore.ops.operations.sparse_ops import SparseSparseMinimum
from mindspore.ops.operations.sparse_ops import SparseSegmentSqrtN
from mindspore.ops.operations.sparse_ops import SparseSegmentSqrtNWithNumSegments
from mindspore.ops.operations.other_ops import BlackmanWindow
from mindspore.ops.operations.nn_ops import SparseApplyCenteredRMSProp
from mindspore.ops.operations.nn_ops import SparseApplyProximalGradientDescent
@ -2278,6 +2280,19 @@ test_case_math_ops = [
'block': P.Erfinv(),
'desc_inputs': [Tensor(np.array([0.1, 0.1, 0.1]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([1, 1, 1]).astype(np.float16))]}),
('SparseSegmentSqrtN', {
'block': SparseSegmentSqrtN(),
'desc_inputs': [Tensor(np.array([[1, 2, 4], [2, 4, 5], [2, 2, 6]]).astype(np.float32)),
Tensor(np.array([0, 1]).astype(np.int32)),
Tensor(np.array([0, 1]).astype(np.int32))],
'desc_bprop': [Tensor(np.array([[1, 2, 4], [2, 4, 5], [2, 2, 6]]).astype(np.float32))]}),
('SparseSegmentSqrtNWithNumSegments', {
'block': SparseSegmentSqrtNWithNumSegments(),
'desc_inputs': [Tensor(np.array([[1, 2, 4], [2, 4, 5], [2, 2, 6]]).astype(np.float32)),
Tensor(np.array([0, 1]).astype(np.int32)),
Tensor(np.array([0, 1]).astype(np.int32)),
Tensor(np.array([3]).astype(np.int32))],
'desc_bprop': [Tensor(np.array([[1, 2, 4], [2, 4, 5], [2, 2, 6]]).astype(np.float32))]}),
('IndexAdd', {
'block': IndexAdd(1),
'desc_inputs': (Tensor(np.array([0, 1, 2]).astype(np.int32)),