optimize code docs
This commit is contained in:
parent
25aa2bee49
commit
0bb05b0e82
|
@ -420,7 +420,7 @@ class Cell(Cell_):
|
|||
|
||||
def shard(self, strategy):
|
||||
"""
|
||||
for all primitive ops in this cell(including ops of cells that wrapped by this cell),
|
||||
For all primitive ops in this cell(including ops of cells that wrapped by this cell),
|
||||
if parallel strategy is not specified, then instead of auto-searching, data parallel
|
||||
strategy will be generated for those primitive ops.
|
||||
|
||||
|
|
|
@ -695,6 +695,8 @@ class Map(Map_):
|
|||
|
||||
Examples:
|
||||
>>> from mindspore import dtype as mstype
|
||||
>>> from mindspore import Tensor, ops
|
||||
>>> from mindspore.ops import MultitypeFuncGraph, Map
|
||||
>>> tensor_list = (Tensor(1, mstype.float32), Tensor(2, mstype.float32), Tensor(3, mstype.float32))
|
||||
>>> # square all the tensor in the list
|
||||
>>>
|
||||
|
|
|
@ -238,8 +238,9 @@ def jvp(fn, inputs, v):
|
|||
|
||||
Returns:
|
||||
Tuple, tuple of output and jvp.
|
||||
- netout(Tensors or Tuple of Tensors), the output of "fn(inputs)".
|
||||
- jvp(Tensors or Tuple of Tensors), the result of the dot product.
|
||||
|
||||
- **netout** (Tensors or Tuple of Tensors) - The output of "fn(inputs)".
|
||||
- **jvp** (Tensors or Tuple of Tensors) - The result of the dot product.
|
||||
|
||||
Raises:
|
||||
TypeError: If the input is not a tensor or tuple or list of tensors.
|
||||
|
@ -287,9 +288,10 @@ def vjp(fn, inputs, v):
|
|||
v (Tensor or tuple or list): The shape and type of v should be the same as outputs.
|
||||
|
||||
Returns:
|
||||
Tuple, tuple of output and jvp.
|
||||
- netout(Tensors or Tuple of Tensors), the output of "fn(inputs)".
|
||||
- vjp(Tensors or Tuple of Tensors), the result of the dot product.
|
||||
Tuple, tuple of output and vjp.
|
||||
|
||||
- **netout** (Tensors or Tuple of Tensors) - The output of "fn(inputs)".
|
||||
- **vjp** (Tensors or Tuple of Tensors) - The result of the dot product.
|
||||
|
||||
Raises:
|
||||
TypeError: If the input is not a tensor or tuple or list of tensors.
|
||||
|
|
|
@ -426,7 +426,7 @@ class Conv2DBackpropFilter(Primitive):
|
|||
top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers, the
|
||||
padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly.
|
||||
pad_list (tuple): The pad list like (top, bottom, left, right). Default: (0, 0, 0, 0).
|
||||
mode (int): Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution ,
|
||||
mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution ,
|
||||
2 deconvolution, 3 depthwise convolution. Default: 1.
|
||||
stride (tuple): The stride to be applied to the convolution filter. Default: (1, 1).
|
||||
dilation (tuple): Specifies the dilation rate to be used for the dilated convolution. Default: (1, 1, 1, 1).
|
||||
|
@ -485,7 +485,7 @@ class DepthwiseConv2dNativeBackpropFilter(PrimitiveWithInfer):
|
|||
Args:
|
||||
channel_multiplier (int): The multiplier for the original output conv.
|
||||
kernel_size (int or tuple): The size of the conv kernel.
|
||||
mode (int): Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution,
|
||||
mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution,
|
||||
2 deconvolution,3 depthwise convolution. Default: 3.
|
||||
pad_mode (str): The mode to fill padding which can be: "valid", "same" or "pad". Default: "valid".
|
||||
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
|
||||
|
@ -552,7 +552,7 @@ class DepthwiseConv2dNativeBackpropInput(PrimitiveWithInfer):
|
|||
Args:
|
||||
channel_multiplier (int): The multiplier for the original output conv.
|
||||
kernel_size (int or tuple): The size of the conv kernel.
|
||||
mode (int): Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution ,
|
||||
mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution ,
|
||||
2 deconvolution,3 depthwise convolution. Default: 3.
|
||||
pad_mode (str): Modes to fill padding. It could be "valid", "same", or "pad". Default: "valid".
|
||||
pad (Union(int, tuple[int])): The pad value to be filled. Default: 0. If `pad` is an integer, the paddings of
|
||||
|
|
|
@ -1317,7 +1317,7 @@ class Conv2D(Primitive):
|
|||
and width of the 2D convolution window. Single int means the value is for both the height and the width of
|
||||
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
|
||||
width of the kernel.
|
||||
mode (int): Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution ,
|
||||
mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution ,
|
||||
2 deconvolution, 3 depthwise convolution. Default: 1.
|
||||
pad_mode (str): Specifies padding mode. The optional values are
|
||||
"same", "valid", "pad". Default: "valid".
|
||||
|
@ -2147,7 +2147,7 @@ class Conv2DTranspose(Conv2DBackpropInput):
|
|||
top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers, the
|
||||
padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly.
|
||||
pad_list (Union[str, None]): The pad list like (top, bottom, left, right). Default: None.
|
||||
mode (int): Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution ,
|
||||
mode (int): Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution ,
|
||||
2 deconvolution, 3 depthwise convolution. Default: 1.
|
||||
stride (Union[int. tuple[int]]): The stride to be applied to the convolution filter. Default: 1.
|
||||
dilation (Union[int. tuple[int]]): Specifies the dilation rate to be used for the dilated convolution.
|
||||
|
|
|
@ -415,10 +415,12 @@ class Partial(Primitive):
|
|||
>>> partial_show_input = partial(show_input, Tensor(1))
|
||||
>>> output1 = partial_show_input(Tensor(2), Tensor(3))
|
||||
>>> print(output1)
|
||||
(1, 2, 3)
|
||||
(Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 2), Tensor(shape=[], dtype=Int64,
|
||||
value= 3))
|
||||
>>> output2 = partial_show_input(Tensor(3), Tensor(4))
|
||||
>>> print(output2)
|
||||
(1, 3, 4)
|
||||
(Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 3), Tensor(shape=[], dtype=Int64,
|
||||
value= 4))
|
||||
"""
|
||||
|
||||
# Side effect will propagated from the first argument to return value.
|
||||
|
|
Loading…
Reference in New Issue